Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водород — Характеристика

Твердое топливо, как правило, сгорает неполностью, и некоторое количество углерода теряется в форме механического недожога. Прореагировавшая часть топлива, таким образом, как бы обогащается водородом, и характеристика действующей массы топлива в этом случае равна  [c.272]

Заметное влияние водорода на характеристики механических свойств проявляется при содержании его в стали в количестве 1—2 см /100 г при дальнейшем увеличении его концентрации пластичность и истинное разрушающее напряжение металла существенно снижаются [83].  [c.141]


Характеристика уг н-водородов, образующих и не образующих комплекса с карбамидом  [c.201]

Рис. 2.12. Характеристики энергоразделения воздуха (/)> водорода (2), гелия (J), аргона кислорода (5) при Рис. 2.12. Характеристики энергоразделения воздуха (/)> водорода (2), гелия (J), аргона кислорода (5) при
Для аппаратов, в которых производится переработка горячих сероводородных и окислительных серосодержащих сред, а также работающих в среде водорода и растворов хлоридов, основными характеристиками, определяющими работоспособность аппарата, становятся физико-химические свойства рабочей среды и металла, степень защищенности аппарата от коррозии, особенно контактирующей с агрессивной средой. Основным видом разрушения таких аппаратов является внутренняя коррозия. В условиях воздействия сероводородсодержащих продуктов имеют место практически все основные виды разрушений локализованной (язвенное, точечное и коррозионное растрескивание) и общей (равномерная и неравномерная) коррозии. Явление повышения коррозионного повреждения металла под действием механических напряжений принято называть механохимическим эффектом (МХЭ). Как будет показано далее в следующем разделе, наиболее сильно МХЭ проявляется в режиме нестационарного нагружения аппарата, которое реализуется в локальных областях перенапряженного металла при повторно-статических нагрузках.  [c.276]

Резерфорд предположил, что появление длиннопробежных протонов связано не с упругим рассеянием а-частиц на ядрах водорода, а с новым явлением — ядерной реакцией, в результате которой первоначальные ядра tN " и гНе" превращаются в другие ядра вО и iH . С этой точки зрения находят свое естественное объяснение все перечисленные характеристики длиннопробежных протонов р, наблюдавшихся Резерфордом.  [c.441]

Число Льюиса — Семенова является важной характеристикой реагирующей смеси. Для смесей, содержащих атомы углерода, бора, кислорода, азота и их соединения Le = 1 — 1,5. При наличии в смеси легких газов число Le изменяется в значительно более широких пределах. Например, для смесей, содержащих водород, число Le = 0,25 - 3,5.  [c.363]

Характеристика Азот Углекислый газ Водород Эле- газ  [c.547]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]


Из приведенных рассуждений вытекают следующие выводы. В случае водородного роста трещин можно выделить три состоя-, ния, которым отвечают три интервала изменения коэффициента К [374, 435]. Первое состояние характеризуется тем, что физикохимические процессы в данной системе металл — водород не обеспечивают выполнение условий начала роста трещины. Этому состоянию соответствует интервал изменения К S К,л, где K,h — пороговый коэффициент интенсивности. Второе состояние характеризуется медленным докритическим подрастанием трещин при Kth < К < /Сн, когда рост трещины тормозится процессами доставки водорода в очаг разрушения. Здесь Кся — критический коэффициент интенсивности в условиях водородного охрупчивания материала. Наконец, третье связано с закритическим ростом трещины при К > Ксн, обеспечиваемым при данном распределении водорода в системе чисто механическим фактором — уровнем нагружения. В последнем случае развитие трещины по своему характеру (но не по микромеханизму роста) близко ее развитию при статических испытаниях в обычных условиях. При этом параметр трещиностойкости по физическому смыслу наиболее близок к характеристике обычной вязкости разрушения Ki (хотя, вообще говоря, ей не тождествен).  [c.326]

Характеристика такой термопары медь-константан приведена на рис.2.13. Как видно, эта термопара успешно применяется и при низких температурах вплоть до точки кипения водорода. Для диапазона температур -  [c.36]

Минимальная температура, при которой газ воспламеняется, называется температурой воспламенения. Эта температура не является физико-химической характеристикой, а зависит для каждого топлива от условий подвода и отвода теплоты и некоторых других факторов. Температура воспламенения водорода лежит в пределах 580...590°С, оксида углерода 644... 658 °С, метана  [c.234]

Топливо состоит из горючей и минеральной части и влаги. В состав горючей части входят углерод С, водород Н и сера S, находящиеся в сложных соединениях с кислородом О и азотом N. Важной характеристикой топлива является теплота сгорания. Теплота сгорания — количество теплоты, выделяющейся при полном сгорании топлива. Различают низшую и высшую теплоту сгорания.  [c.21]

Важную роль водорода при развитии коррозионной трещины отмечают авторы работы [67] на основании сопоставления характеристик роста трещин в газообразном водороде и водных растворах хлоридов. Они показали, что в водных средах рост трещин протекает с той же скоростью, что и в чистом водороде при давлении 10 МПа/м .  [c.64]

Ухудшение механических характеристик металла в условиях кислотной. коррозии, в частности при процессах травления и промывки теплосилового оборудования, связывают обычно с наводоро-живанием. Поэтому было необходимо выяснить, не открывает ли применение ингибиторов, снижающих содержание водорода в металле  [c.45]

Описанный процесс шел многие тысячи лет, и со временем характеристики угля менялись возрастала концентрация углерода, снижалось содержание водорода и кислорода. Самым молодым из углей можно считать торф, в котором меньше всего углерода, зато относительно много водорода и кислорода. Самым древним углем является графит, который представляет собой почти чистый элементный углерод.  [c.46]

В табл. 6.3 сопоставлены отдельные характеристики водорода и метана при использовании их в качестве энергоносителей. Отметим, что в объемном отношении удельная теплота сгорания водорода примерно раза в три меньше, чем метана. Однако его вязкость тоже втрое меньше вязкости метана. Поэтому про-  [c.120]

Таблица 6.4. Сравнение эксплуатационных характеристик дозвуковых самолетов, работающих на керосине и на жидком водороде Таблица 6.4. Сравнение <a href="/info/108977">эксплуатационных характеристик</a> дозвуковых самолетов, работающих на керосине и на жидком водороде

Рассмотрено влияние процентного содеряанжя водорода на характеристики как циклической, так и статической трещиностойкости титанового Л -сплава ПТ-7М. Показано, что минимальные пороговые значения КИН и скорости роста усталостной трещины в припороговой области практически не зависят от уровня наводорояивания, в то время как критические значения КИН при статическом нагружения существенно падают с ростом содервания водорода в сплаве.  [c.131]

С аналогичной ситуацией приходится встречаться и в атоме водорода. Для характеристики состояний атома вводится орбитальное квантовое число /, характеризующее орбитальный момент количества движения атомов. АтОм с данным I может иметь (2/+1) состояний, так как во внешнем поле могут существовать только вполне определенные значения проекций I на направление поля (от — I до +/). Пока внешнего поля нет, состояние 2/Ч-1-кратновырождено.  [c.72]

Выполненный анализ зарождения и роста пор позволяет сформировать подход к рассмотрению кавитационного межзе-ренного разрушения в случае интенсификации развития повреждения теми или иными факторами, в частности агрессивной средой. Известно, что влияние агрессивной среды может проявляться в виде двух основных процессов. Первый обусловлен непосредственным взаимодействием среды с металлом и разрушением продуктов взаимодействия под действием напряжений. Второй процесс связан с переносом к границам зерен различных элементов среды (например, кислорода, водорода и др.), ускоряющих тем или иным способом межзереннсе разрушение материала. Для объяснения этого нетрадиционного механизма влияния среды на характеристики разрушения предложены различные модели [240, 286, 306, 329, 334, 424]. В частности, охрупчивающее влияние кислорода может быть связано с ограничением подвижности границ зерен и увеличением их проскальзывания, приводящего к росту межзеренных повреждений [240]. Рассматривался также клиновой эффект, возникающий  [c.166]

Из всего многообразия факторов, влияющих на электрохимический процесс коррозии, весьма важным является водородный показатель раствора электролита, т. е. характеристика активности в ием водородных ионов. Усиление или ослабление коррозионного процесса часто является функцией от активности ионов водорода в растворе. Уменьшение pH раствора, т. е. увеличение активности ионов Н+-приводит обычно к возрастанию скорости коррозии, так как потенциалы водородного и кислородного электродов делаются более иоложительиымл к катодные процессы водородной и кислородной деполяризации облегчаются. Примером такого влияния pH на скорость коррозии может СЛУЖИТЬ сильное ускорение растворения многих металлов (же-  [c.69]

Основные характеристики перечисленных выше ожижителей приведены в табл. 13, где указаны ироизводительиость компрессора, давление сжатого водорода />2 и его температура перед основным теплообменником, количество получаемого жидкого водорода G и коэффициент ожижеиия s.  [c.71]

Присутствующий в гидрогенизированном аморфном кремнии водород оказывает влияние не только на электрические, но и на оптические свойства материала. Одной из основных оптических характеристик кремния является коэффициент оптического поглощения и его зависимости от энергии фотонов (или длины волны) излучения.  [c.18]

В паровых компрессионных установках в качестве рабочих тел (хла-доагентов) чаще всего применяют аммиак NH3 или фреоны (хлорфтор-производные углеводородов метанового ряда, т. е. химические соединения, получаемые при замещении в С,пН атомов водорода атомами хлора и фтора). Особенностью этих рабочих тел является низкая температура кипения. Характеристика указанных хладоагентов приведена в табл. 10-2.  [c.127]

Своеобразное действие па титан оказывает примесь водорода, которая еще 41едавно считалась допустимой в довольно значительных количествах. Действительно, водород почти не влияет на прочность и пластичность титана при статическом растяжении, но даже при содержании 0,02% водород может оказывать вредное влияние на такие характеристики титана, как чувствительность к надрезу и к длительному действию постоянно действующих нагрузок. Водород способен вызывать медленное охрупчивание титановых сплавов  [c.362]

Палладиевые покрытия находят все большее применение благодаря своей относительно невысокой стоимости и тому, что палладий менее дефицитен из всех остальных платиновых металлов. За последние годы возросло применение палладия для покрытий электрических контактов в радиотехнйчёской аппаратуре, в аппаратуре связи палладием покрывают контакты.переилючрт лей, штепсельных разъемов печатных плат. Применяя палладий, надо,помнить, что он обладает большой каталитической активностью и появляющаяся пленка на поверхности слаботочных контактов может привести к заметному повышению переходного сопротивления, поэтому необходимо очень осторожно подходить к применению палладиевых покрытий в герметизированных системах. Необходимо также учитывать, что палладий легко адсорбирует водород, а это оказывает неблагоприятное действие на прочность сцепления покрытия с основой. Если же контакты. покры,тые палладием, работают при большой силе тока, то образовавшиеся на поверхности детали, пленки не оказывают влияния на электрические характеристики.. Широкому распространению палладия способствуют также новые разработанные технологические процессы получения достаточно толстых покрытий. Палладированный титан в нейтральных и щелочных средах может использоваться в качестве нерастворимых анодов. Толщина палладиевых осадков в зависимости от назначения может изменяться от 3—5 мкм до 20—50 мкм (для контактов и при защите от коррозии). На основе палладия могут быть получены многие сплавы, которые в ряде случаев могут заменять палладиевые покрытия. Такие сплавы, как палладий — никель, палладий— кобальт, палладий — индий, палладий — медь, палладий — олово с успехом могут применяться для покрытия электрических контактов. Свойства палладия во многом зависят от условий получения и состава электролита, из которого он получен.  [c.55]


Для создания глубокого холода в криостатах применяются жидкие газы гелий, иеон, аргон, азот, водород, окись углерода, характеристики которых приведены в табл. 3.3, и 3.4.  [c.51]

Физической основой нейтронной радиографии является зависимость сечения взаимодействия излучения с веществом от характеристик вещества и прежде всего от его атомного номера и массового числа. В отличие, например, от рентгеновского и v-излучений эта зависимость для нейтронов (преимущественно низких энергий) выражена более сильно и имеет до некоторой степени противоположный характер (рис. 40). В связи с тем что эффективные сечения взаимодействия а нейтронов с ядрами веществ увеличиваются с понижением энергии нейтронов (рис. 41), в радиационной дефектоскопии нащли преимущественное использование тепловые и надтепловые нейтроны. Из анализа кривых следует, что нейтроны вполне целесообразно использовать при дефектоскопии таких веществ, как марганец, бор, кадмий, водород и др. В этих веществах наблюдается резкое изменение а в зс-висимости от энергии, что позволяет хорошо выявлять дефекты.  [c.338]

Ранее были рассмотрены так называемые разомкнутые циклы ГТУ, в которых продукты сгорания после раширения в газовой турбине выбрасываются в атмосферу. Таким образом, рабочее тело в цикле все время меняется. Существуют циклы, в схеме которых циркулирует неизменное количество рабочего тела. Такие циклы называются замкнутыми. Принципиальная тепловая схема ГТУ с замкнутым циклом представлена на рис. 93. В качестве рабочего тела в этих циклах может использоваться воздух или другой газ с лучшими термодинамическими характеристиками (более высокой, чем у воздуха, теплоемкостью, большим показателем адиабаты и др.), например гелий, аргон, водород, фреон. Подогрев рабочего тела до требуемой температуры производится в специальном нагревателе с внешней топкой, поэтому в ГТУ замкнутого цикла можно сжигать твердое топливо, что практически невозможно в ГТУ открытого цикла.  [c.212]

При нагреве покрытий фосфора диффундирует из них в основной металл, на границе которого образуется новая фаза, вероятно, фосфида железа Fe P. В процессе химического никелирования в осадок включается водород Следует отметить, что в покрытиях, полученных химическим способом, водорода в несколько раз меньше чем в гальванических покрытиях Содержание водорода возрастает с увеличением толщины покрытий, причем в покрытиях, полученных из кислых растворов, водорода на 50 % больше, чем в покрытиях из щелочных растворов Водород оказывает вредное влияние на прочностные характеристики никелированных изделий, лоэтому его надо удалять из осадков путем нагрева  [c.10]

Очевидно, однако, что ни одна из рассмотренных возможностей не монщт быть использована применительно к анодам ХИТ, так как во всех этих случаях резко замедляется анодный процесс, что приводит к ухудшению электрических характеристик источников тока. В химических источниках тока наиболее перспективным представляется применение в качестве ингибиторов солей тяжелых металлов — ртути, свинца, кальция, таллия и некоторых других, защитное действие которых связано [192 2561 с тем, что на них перенапряжение водорода заметно выше, чем на защищаемых металлах — железе и цинке (табл. 20).  [c.85]

Так, в стали Х15Н5Д2Т в состоянии, не склонном к хрупкому разрушению (закалка с 1000°С, охлаждение в воде, выдержка при —70°С и при 525°С), при насыщении водородом в количестве около 3 см в 100 г наблюдаются фасетки отрыва, аналогичные фасеткам, образовавшимся в состоянии, склонном к хрупкому разрушению, например закалка с 1200°, охлаждение в воде, выдержка при 450°С 2 ч (рис. 27). Уменьшение скорости нагружения от 30 до 0,02 мм/с значительно увеличивает долю хрупких фасеток отрыва в первом случае и не изменяет эту фрактографическую характеристику в стали с низким отпуском.  [c.46]

Из многочисленных экспериментальных исследований известно, что средний диаметр атома равен 10 см, масса и положительный электрический заряд сосредоточены в ядре диаметром около 10" см. Обычный атом электрически нейтралей, каждому положительному электрическому заряду, заключенному в протоне, находящемся в ядре, соответствует отрицательный заряд—электрон, находящийся вне ядра. Химические свойства атома определяются числом электронов и, следовательно, протонов. При химической реакции число электронов, связанных с атомом, обычно может меняться если же изменится число протонов (и это может иметь место ), то должны измениться и свойства. Число протонов ядра равно его атомному номеру. Другой физической характеристикой ядра является его масса. Для измерения массы принята система единиц, в которой масса атома углерода равна точно 12 единицам. Атомная единица массы (а. е. м.) определяется как V12 массы изотопа углерода, 1 а. е. м. = 1,6598-10 2 кг, В этой системе масса атома водорода, состоящего из одного протона и одного электрона, очень близка к 1 а. е. м. Масса электрона равна V2000 массы протона, и поэтому его масса в атомных единицах массы равна 0. Протоны и электроны еще не составляют массу ядра. Большая ее часть  [c.159]


Смотреть страницы где упоминается термин Водород — Характеристика : [c.8]    [c.238]    [c.164]    [c.489]    [c.59]    [c.350]    [c.51]    [c.364]    [c.265]    [c.132]    [c.156]    [c.114]    [c.415]    [c.439]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.198 ]



ПОИСК



Водород

Водород Характеристики тепловые

Характеристики аморфных материалов как абсорбатов водорода



© 2025 Mash-xxl.info Реклама на сайте