Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводники Общие основы

Дефекты положения узлов, линий, а также плоскостей носят общее название дефектов решетки. Исследования дефектов решетки начались с целью выяснения причин появления очень низких значений механической прочности и упругости металлов. Затем такие исследования стали развиваться в связи с потребностью объяснения структурно-чувствительных свойств кристаллов, обусловливающих такие явления, как цветовая окраска кристаллов, люминесценция, светочувствительность в фотографии, электропроводность полупроводников, магнитная проницаемость твердого тела, диффузия электронов в твердом теле, рост кристаллов и т. п. Современное интенсивное развитие полупроводников на основе германия и кремния служит стимулом усовершенствования техники исследования и регулирования дефектов решетки.  [c.40]


Очевидно, что для правильного использования термометров сопротивления нет необходимости в детальном понимании процессов электропроводности. Однако исследования, направленные на улучшение воспроизводимости результатов измерений, расширение диапазона применения термометров, едва ли будут эффективными без общего знакомства с теоретическими основами их работы. Прежде чем приступить к описанию характеристик и практического использования основных типов термометров сопротивления, рассмотрим кратко теорию электропроводности чистых металлов, сплавов и полупроводников.  [c.186]

Кинга написана на основе курса лекций, читавшихся автором в течение многих лет на физическом факультете МГУ. Книга хорошо известна в нашей стране и широко используется а качестве учебного пособия по общему курсу физики о университетах и физико-технических институтах, В новом издании основное содержание книги осталось без существенных изменений. Переработке подверглись главным образом главы, посвященные электронным явлениям в металлах и полупроводниках, а также явлениям в контактах дано понятие о квантовом описании электронных процессов в твердых телах кроме того, внесены более мелкие изменения в других частях книги.  [c.928]

Дополнительные разрешенные частоты при определенных условиях могут возникать и в интервале между оптическими и акустическими ветвями колебаний. Интересно отметить, что поскольку теория колебаний атомов и теория электронных состояний в кристаллах имеют общую математическую основу, то по аналогии с локальными модами колебаний появление дефектов может приводить и к разрешенным энергетическим (локальным) состояниям электронов в области энергетической щели. Подобные состояния, действительно, обнаружены и имеют большое значение, например, в физике полупроводников.  [c.220]

В основу метода положены закономерности монотонного разогрева пластины одномерным тепловым потоком. В качестве образцов выбираются либо тонкие диски (когда исследуются твердые теплоизоляторы и тепловые полупроводники), либо короткие стержни постоянного сечения (металлы, графит). Температурные измерения осуществляются термопарами. На базе метода создано несколько приборов и установок с общим температурным диапазоном от — 150 до + 1000 С.  [c.65]

Предполагается, что вязкость жидкости должна быть очень чувствительной к ее микроскопической структуре. Хотя теория связи вязкости с микроскопической структурой является очень сложной, так что точная интерпретация экспериментальных результатов оказывается трудной, для некоторых жидких полупроводников могут быть получены определенные выводы на основе общих соображений.  [c.56]


В последующих главах мы рассмотрим подробно некоторые из выводов, которые можно сделать из экспериментальных данных для а и 5 на основе обсуждаемых здесь теорий. Однако некоторые общие наблюдения могут быть сделаны уже сейчас. Многие из данных для жидких полупроводников находятся в диффузионной области 200<о<3000 Ом см Ч Поскольку для этих жидкостей предполагается, что / находится вблизи или выше порога подвижности, она должна быть внутри валентной зоны или зоны проводимости. Если, кроме того, а быстро увеличивается с повышением температуры, как это происходит во многих сплавах, богатых Те, то объяснение следует искать в росте o Ef), а не в возбуждении носителей через энергетическую щель, как это. принято в теории полупроводников.  [c.106]

В настоящем курсе излагаются основы материаловедения и технологии полупроводников, которые позволяют получить общее представление об основных закономерностях образования полупроводниковых фаз, о механизмах их роста, условиях получения, а также получить представление о наиболее широко используемых в промышленности методах производства объемных полупроводников и эпитаксиальных полупроводниковых пленок с заданными свойствами. Эти знания необходимы студентам, специализирующимся в области физики полупроводников, для понимания специальной литературы. Действительно, почти каждая статья, посвященная исследованию свойств полупроводников или созданию приборов на их основе, начинается с описания метода получения материала, так как его свойства, как будет показано в этом курсе, тесно связаны с методом его получения.  [c.5]

Весь материал курса разбит на главы, тесно связанные друг с другом. Во второй главе на основе теории химических связей излагаются основные закономерности образования полупроводников. В третьей главе рассмотрены структурные дефекты и их влияние на свойства материала. Описание существующих фазовых диаграмм, которые позволяют выбрать оптимальные условия получения полупроводника заданного состава, а также элементы общей теории образования фаз даны в четвертой  [c.5]

Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]

Следует также отметить, что на основе формул (5-33) и (5-40) М0Ш10 сделать заключение о различии теплопроводности диэлектриков и полупроводников в аморфном, поликристаллическом и монокристаллическом состоянии. Для этого выражение (5-33) представим в более общем виде  [c.185]

Гетеролазеры и гетерофотоприём-н и к и, используемые в сочетании с плёночными полупроводниковыми Болиоводами, могут выполняться на основе единой Г. и на общей полупроводниковой подложке объединяться (интегрироваться) в оптич. схему (методами планарной технологии). Для управления условиями генерации и распространения света часто используются сложные Г., активный слой к-рых состоит из неск. слоев постоянного или плавно изменяющегося состава с соответствующим изменением Sg. Помимо локализации света в пределах одного или неск, слоёв в плоскости ГП, при создании интегрально-оптнч. схем возникает необходимость дополнит, локализации световых потоков в плоскости волноводных слоёв (в плоскости ГП). Такие волноводы наз. полосковыми и создаются изменением либо состава и свойств полупроводника в плоскости ВОЛ1ГОВОДНОГО слоя, либо толщины слоёв, Встраивание гетеролазера в волноводную схему осуществляется с помощью оптического резонатора, образуемого периодич, модуляцией толщины волноводного слоя. При определ. выборе периода модуляции благодаря дифракции в волноводе возникает волна, бегущая в обратном направлении. В результате формируется распределённое отражение света (см. Интегральная оптика).  [c.449]


В статистич. теории в общем случае сред, состоящих из взаимодействующих частиц, Н. с. определяется зависящей от времени ф-цией распределения всех частиц по координатам и импульсам или соответствующим статистич. оператором. Однако такое определение Н. с. имеет слишком общий характер, обычно достаточно описывать Н. с. менее детально, на основе огрублённого иля т. и. сокращённого описания. Напр., для газа малой плотности достаточно знать одночастичную ф-цию распределения по координатам и импульсам любой из частиц, удовлетворяющую кинетическому уравнению Больцмана и полностью определяющую ср. значения длотностен энергий, импульса и числа частиц и их потоки. Для состояний, близких к равновесному, можно получить решение кинетич. ур-ния, зависящее от Т(х.1),. i x,t), и(х,1) и их градиентов и позволяющее вывести ур-ния переноса для газа. Однако ф-ция распределения по энергиям для частиц газа в стационарном Н. с. может сильно отличаться от равновесного распределения Максвелла. Напр., для электронов в полупроводниках в сильном электрич. поле, сообщающем электронам большую энергию, теряет смысл даже понятие темп-ры электронов, а ф-ция распределения отличается от максвелловской и сильно зависит от приложенного поля.  [c.328]

В зависимости от вида наполнителя фенопласты подразделяются на пресс-порошки, волокниты, текстолиты и стеклопластики. Кроме пластмасс на основе феноло-формальдегидных смол получают замазки ( Арзамит ), клеи и герметики, лаки, графитопласты или пропитанные углеграфитовые материалы и пенопласты. Наиболее обширную группу, перерабатываемую в изделия обычным прессованием или профильным способом, составляют пресс-порошки. Различают пресс-порошки общего назначения с, высокими электроизоляционными свойствами,. с повышенной водостойкостью и теплостойкостью (марки К-18-36, К-211-2 и др.) пресс-порошки повышенной химической стойкости (фенолиты и декорро-зиты) повышенной прочности (ФКП, ФКПМ) и пресс-порошки особого назначения для полупроводников и деталей рентгеновской аппаратуры (К-104-205).  [c.178]

Первые попытки применения квантово-механической теории энергетического состояния электронов в диэлектриках и полупроводниках к интерпретации фотохимических и фотоэлектрических явлений в щелочно-галоидных кристаллах принадлежат П. С. Тар-таковскому [71]. На основе имевшихся в то время экспериментальных данных и общих соображений об энергетических уровнях в кристаллах Тартаковским впервые была построена схема энергетических уровней для ряда щелочно-галоидных соединений с учетом локальных электронных состояний различных центров окраски. Анализируя электронные переходы между различными уровнями энергии кристалла, можно было объяснить ряд оптических и фотоэлектрических свойств окрашенных кристаллов ще-лочно-галоидных соединений с единой точки зрения. Однако в отличие от полупроводников, для которых свет в области их фундаментального поглощения является фотоэлектрически активным, в щелочно-галоидных кристаллах не наблюдается внутреннего фотоэффекта под действием света в области первой полосы собственного поглощения. По этой причине попытки применения зонной теории к толкованию всей совокупности явлений, связанных с собственным поглощением, фотопроводимостью и люминесценцией щелочно-галоидных кристаллов наталкивались на существенные затруднения. Некоторые фундаментальные экспериментальные факты относительно свойств окрашенных щелочно-галоидных кристаллов не получили объяснения ни в энергетической схеме Тарта-ковского, ни в подобных более всеобъемлющих схемах, предлагавшихся позднее. В частности, оставалась совершенно непонятной сама возможность образования в кристалле столь устойчивой окраски под действием света или рентгеновых лучей, какая в действительности наблюдается у щелочно-галоидных кристаллов. В самом деле, при образовании в процессе фотохимического окрашивания свободных электронов, локализующихся затем на уровнях захвата, в верхней зоне заполненных уровней энергии должны образоваться свободные положительные дырки. Вследствие диффузии этих дырок в верхней зоне заполненных уровней вероятность их рекомбинации с электронами, локализованными в центрах окраски, должна быть достаточной, чтобы кристалл быстро обесцветился даже в темноте. Между тем, известно, что окраска кристалла весьма устойчива и сохраняется в темноте очень продолжительное время. Возможность локализации положительных дырок в предлагавшихся квантово-механических моделях не рассматривалась.  [c.30]

Изменение поглощающих свойств полупроводниковых материалов в области края межзонных оптических переходов при нагревании известно давно. В курсе общей физики [5.1] обсуждается оптическое явление, на основе которого можно разработать метод бесконтактного измерения температуры слой иодида ртути HgI2 на отражающей подложке при нагревании изменяет свой цвет от желтого до красного. Соединение HgI2 является полупроводником с шириной запрещенной зоны g 2,4 эВ (что соответствует длине волны примерно 517 нм, относящейся к зеленому диапазону видимого спектра), которая изменяется с температурой как (1Е /(1в —10 эВ/К [5.2].  [c.109]

Экспериментальные результаты, подобные показанным на двух последних рисунках, не могут, конечно, количественно объяснить электропроводности в некристаллических полупроводниках. Прежде чем можно будет сделать однозначные утверждения, следует измерить другпе характеристики. Более того, только небольшое количество отдельных результатов на отдельных веществах может быть проанализировано так же ясно, как в вышеуказанных примерах. Случаи, которые мы обсудили, таким образом, предназначены только для иллюстрации правильности в своей основе концепции перескоков, обрисованной в общих чертах. Они представляют собой только очень малую часть проблемы электропереноса в неупорядоченных твердых телах. Многие вопросы в этой области все еще нуждаются в фундаментальном объяснении.  [c.152]

Хорошо известно, что материальные уравнения линейной электродинамики, которая описывает гармонические волны, распространяюш иеся в среде без искажений, и где имеет место принцип суперпозиции, являются приближенными. Так, линейное соотношение между поляризацией и напряженностью электрического поля Р = хЕ получается при простейшем классическом расчете на основе идеализированной модели гармонического осциллятора при более общем квантовом рассмотрении линейная связь между поляризацией и полем соответствует первому приближению теории возмущений. Степень пригодности указанных приближений зависит в первую очередь от соотношения между амплитудой поля световой волны и характерным внутренним полем Во, определяющим силы связи, действующие на оптический электрон в среде. Поле Ео связано с потенциалом ионизации / и характерным расстоянием а (на котором поле обеспечивает связь) соотношением еЕоа = 1. Для атома водорода это поле 0 = 5 10 в см. Для конденсированных сред величина Ео меньше, и, в частности, для полупроводников с относительно небольшой шириной запрещенной зоны Ей 10 в СМ сравнимую с последней величиной напряженность поля нетрудно получить при фокусировке пучка современного мощного лазера. Поэтому для описания оптических эффектов в таких полях линейное материальное уравнение должно быть замене-  [c.5]


Автор ясно представляет себе, что книга не лишена недостатков, ш может только просить о снисхождении, учитывая трудности, возникающие при необходимости осветить весьма широкий круг вопросов при очень малом объеме книги. При оп исании электронной теории металлов мы полагал и, что в первом приближении достаточно, чтобы изучающий усвоил самые общие представления о полосах энергии электронов. Поэтому зоны Бриллюэна в основйом тексте не рассматриваются, а кратко описываются в приложении I в конце книги. Представления Полинга приведены в книге в рамках первоначальной гипотезы отчасти потому, что изучающему придется встретиться со статьями, в которых делаются ссылки на схемы валентных связей, развитые в 1938 г. Кроме того, практически сколько-нибудь серьезного критического обсуждения относительной ценности этих представлений и слегка измененной трактовки этих вопросов в книге Полинга Природа химической связи в издании 1960 г. еще не проводилось. Полупроводники и строение  [c.7]

Кроме полупроводников, структура которых является производной от структуры алмаза и которые образуются путем заполнения дополнительных мест в этой решетке, существуют полупроводники с дефектными структурами на основе структур сфалерита и вюртцита. Это соединения четвертого типа. Они образуются при замене атомов А из II подгруппы на атомы из III подгруппы и изменении их числа с трех на два для сохранения общего числа электронов в молекуле. С точки зрения правила нормальной валентности и правила Музера-Пирсона такое изменение роли не играет — в обоих случаях rig = 24, Nb = 3, Nbb = 0. Однако число валентных электронов на атом становится больше 4 (24/5 = 4.8). Такая ситуация приводит к образованию дефектной тетраэдрической структу-  [c.80]

В основе модели РФЛВ лежат представления теории кристаллического поля (ТКП), предполагающей эквивалентность спектроскопических единиц, описывающих электронные термы, и координационных полиэдров, составляющих структуру кристалла. Полиэдр состоит из отрицательно заряженных ионов-лигандов (например, атомов кремния), находящихся в его вершинах, и расположенного в центе полиэдра положительно заряженного иона -металла. В ТКП пренебрегается электронной структурой лигандов, то есть лиганды отождествляются с точечными электрическими зарядами, и их роль сводится только к созданию электрического кристаллического поля. Симметрия кристаллического поля определяется симметрией координационных полиэдров, составляющих структуру рассматриваемого кристалла. Для полупроводников А , А В и А В следует рассматривать только два типа симметрии тетраэдрическую и для учета второй координационной сферы — октаэдрическую. Механизм преобразования электронных термов -иона в кристаллическом поле рассмотрен в [30]. Подобная модель позволяет получить общую картину поведения всех уровней -иона в кристаллическом поле качественный характер расщепления уровней, их взаимное расположение и относительные энергетические зазоры между ними.  [c.126]


Смотреть страницы где упоминается термин Полупроводники Общие основы : [c.220]    [c.362]    [c.68]    [c.588]    [c.555]   
Смотреть главы в:

Современная теория твердого тела  -> Полупроводники Общие основы



ПОИСК



Полупроводники



© 2025 Mash-xxl.info Реклама на сайте