Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие положения и формулировка закона

ОБЩИЕ ПОЛОЖЕНИЯ И ФОРМУЛИРОВКА ЗАКОНА  [c.67]

Историю принципа живых сил можно начать с Галилея — его утверждение, что скорость, приобретаемая при движении тела вдоль наклонной плоскости, определяется только разностью высот исходного и начального положения, является первым и частным случаем этого принципа. В более общей форме это же положение высказано Торричелли (см. гл. V). Гюйгенс (см. там же, п. 19) заметил сохранение суммы живых сил при соударении идеально упругих шаров, — надо только оговорить, что для точной формулировки Гюйгенсу недоставало явного введения понятия массы. С той же оговоркой зависимость между суммой живых сил нескольких тяжелых материальных точек и работой силы тяжести при их перемещениях указана в Маятниковых часах Гюйгенса, и это — непосредственное продолжение линии Галилей — Торричелли. Все это — предыстория принципа живых сил, ибо в достаточно общем виде и вместе с названием и определением величины он появляется только в 1686 г. в работе Лейбница. Работа коротка (шесть страниц) и содержательна, название длинно Краткое доказательство удивительной ошибки Декарта и других относительно закона природы, согласно которому, как полагают, господь всегда сохраняет одно и то же количество движения, но который разрушает механику В ней есть положи-  [c.127]


Первые три главы курса посвящены изложению общих положений кинематики, статики и динамики жидкостей и газов, установлению основных уравнений, формулировке главнейших законов и теорем. Стремление к максимальному приближению к процессам, происходящим при движениях с большими скоростями, заставляет тесно связывать динамические явления с термодинамическим балансом энергии в них.  [c.11]

Рассмотрим основные положения теории подобия. Законы природы и их математические модели, являясь отображением объективной реальности, в наиболее общих формулировках не могут зависеть от выбора системы мер. Это означает, что множество размерных величин, характеризующих некоторый конкретный процесс, в действительности эквивалентно множеству некоторых безразмерных комплексов, составленных из этих величин. Наибольшее возможное число этих комплексов определяется в соответствии с л-теоремой анализа размерностей как р = п — I, где р — общее число безразмерных комплексов п — общее число размерных переменных, характеризующих данный процесс I — число основных размерностей, из которых составлены эти переменные.  [c.16]

Следует еще обратить внимание на то, что максимумы функций Ъо (X, Т) и 7 (X, Т) не имеют ничего общего с так называемым максимумом энергии в спектре излучения абсолютно черного тела. Встречающаяся иногда формулировка закона Вина, согласно которой длина волны указывает на положение максимума энергии в спектре абсолютно черного тела [Л.23], в корне неправильна по крайней мере до тех пор, пока не указано, в каких спектральных интервалах следует сопоставлять энергии излучения в разных частях спектра. Те, кто пользуется этой формулировкой, упускают из вида простое правило, состоящее в том, что в нулевом спектральном интервале может быть заключена только нулевая энергия, так же как в пределах нулевого телесного угла, т. е. в строго параллельном пучке лучей или в излучении строго точечного источника.  [c.126]

Сделаем теперь краткий обзор формулировок II начала, предшествовавших данной Клаузиусом в 1865 г. и ставших в некотором смысле историческими . Их словесная форма и откровенная наглядность подкупают, но эта литературная форма требует определенных пояснений и математической конкретизации, без которых их просто невозможно привести к рабочей форме (II). Заметим, что если при формулировке основ целого научного раздела необходимо принять некоторое число исходных (что значит недоказуемых в рамках данного подхода) положений (которые можно назвать аксиомами, началами, законами и т. п.), то с точки зрения дела безразлично, в какой форме это будет сделано, в категорической (как это любят делать математики) или в завуалированной и требующей дополнительных разъяснений. Ведь помимо всем нам известных законов сохранения в физике есть еще и общий исходящий из требований логики (если конечно, она не женская ) закон сохранения идей исходных положений, и если какое-нибудь научное направление, отображающее определенный круг явлений природы, основывается на конкретных вложенных в него исходных положениях, то незаметно протащить хотя бы часть из них просто нельзя можно обмануть людей, но не природу. Предпринималось много попыток вывести II начало из более общих представлений. Еще в прошлом веке упоминавшийся нами Ренкин потратил много сил, чтобы из I начала и своих представлений о природе теплового движения получить (II).  [c.67]


I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]

Первая глава посвящена термодинамическим основам термоупругости. Изложение начинается с основных положений классической термодинамики. При рассмотрении второго закона термодинамики предпочтение дается новой его формулировке, разработанной профессором Киевского университета Н. Н. Шиллером в 1897—1901 гг., немецким математиком Каратеодори в 1909 г. и Т. А. Афанасьевой-Эренфест в 1925—1928 гг. Эта формулировка устанавливает общий эмпирический принцип о невозможности определенных процессов — принцип адиабатической недостижимости, удобный для математического выражения второго закона термодинамики в случае термодинамических систем, состояние которых определяется большим числом независимых переменных (деформируемых твердых тел и др.).  [c.6]

Наряду с дифференциальными уравнениями была указана также формулировка тех же физических положений в интегральном виде интегральная форма уравнения неразрывности ((1.2), гл. 1П), уравнения импульсов ((2.2), гл. III), 1-го закона термодинамики — уравнения энергии ((8.1), гл. V), второго закона термодинамики ((8.2), гл. V) и общих уравнений Максвелла ((5.5), гл. VI).  [c.333]

Сначала напомним определение инерциальной системы отсчета и формулировку принципа относительности. Под системой отсчета -5 можно понимать платформу, снабженную линейкой и часами. С ее лсшощью можно определять положение тел и гп2 и течение времени. Эта платформа сама может перемещаться по прямой, на которой постоянно расположены соударяющиеся тела и Шг-Принцип относительности постулирует существование инерциаль-ны.х систем отсчета, в которых все законы механики (в том числе и законы удара) имеют одинаковый вид. В частности, любое тело, не взаимодействующее с другими телами, движется относительно любой инерциальной системы отсчета равномерно и прямолинейно (закон инерции Галилея — Ньютона). Приведенная выше формулировка принципа относительности является очень общей она справедлива и в релятивистской механике. Специфика ньютоновской механики проявляется в определении связи между различными нерциальными системами отсчета.  [c.7]

Сделаем теперь краткий обзор формулировок II начала, предшествовавших данной Клаузиусом в 1865 г. и ставших в некотором смысле историческими . Их словесная форма и откровенная наглядность подкупают, но эта литературная форма требует определенных пояснений и математической конкретизации, без которых их просто невозможно привести к рабочей форме (II). Заметим, что если при формулировке основ целого научного раздела необходимо принять некоторое число исходных (что значит недоказуемых в рамках данного подхода) положений (которые можно назвать аксиомами, началами, законами и т. п.), то с точки зрения дела безразлично, в какой форме это будет сделано, в категорической (как это любят делать математики) или в завуалированной и требующей дополнительных разъяснений. Ведь помимо всем нам известных законов сохранения в физике есть еще и общий исходящий из требований логики (если, конечно, она не женская ) закон сохранения идей исходных положений, и если какое-нибудь научное направление, отображающее определенный круг явлений природы, основывается на конкретных вложенных в него исходных положениях, то незаметно протащить хотя бы часть из них просто нельзя можно обмануть людей, но не природу. Предпринималось много попыток вывести II начало из более общих представлений. Еще в прошлом веке упоминавшийся нами Ренкин потратул много сил, чтобы из I начала и своих представлений о природе теплового движения получить (II). В дальнейшем предпринимались попытки микроскопического подхода к этому вопросу (речь идет пока о равновесной теории и квазистатических переходах), но их действительная стоимость, пожалуй, эквивалентна стоимости попыток микроскопического объяснения, что такое температура. И не случайно поэтому в 1 в качестве одного из основных признаков термодинамических систем мы поставили их свойство удовлетворять всем трем началам термодинамики.  [c.53]


Прежде всего оказалось, что Никола Сади Карно в своих исследованиях опирался на I начало. Точность и современность его формулировки закона сохранения энергии настолько впечатляют, что ее стоит привести, сохранив некоторую архаичность терминологии Тепло есть не что иное, как движущая сила или, вернее, движение, изменившее свой вид это движение частиц тел повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Таким образом, можна высказать общее положение движущая сила существует в природе в неизменном количестве, она, собственно говоря, никогда не создается, никогда не уничтожается в действительности она меняет форму, т. е. вызывает то один род движения, то другой,, но никогда не исчезает. По некоторым представлениям, которые у меня сложились относительно теории тепла, создание единицы движущей силы требует затраты 2,7 единиц тепла . Вот мнение Анри Пуанкаре (1892) по поводу приведенного выше отрывка Можно ли яснее и точнее высказать закон сохранения энергии Заметим, что значение эквивалента, определенное Карно в 2,7 ккал на единицу работы, за которую Карно принимает 1000 кгм, соответствует 370 кгм/ккал, что недалеко от истины и совпадает с числом Майера . Не очень ясно, каким образом Карно пришел к этому числу, возможно, он использовал для этого данные по теплоемкостям газов Ср и Отпадают не только прижившиеся в некоторых руководствах обвинения в приверженности Карно концепции теплорода (что соответствовало его уровню 1824 г.), но как-то колеблется первенство Августа Кренига (А. К. Кгоп1д, 1856) и несколько позже Рудольфа Клаузиуса (1857) в провозглашении на уровне науки XIX в. кинетических представлений о природе тепла (напомним, что в России свой вариант подобных представлений активнейшим образом отстаивал М. В. Ломоносов еще в 1745 г.).  [c.66]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]

Многочисленные интуитивные намеки на существование принципа сохранения силы — энергии приобретают у Гюйгенса более определенное рациональное очертание и широту. Исследуя законы качания маятника, он исходит из правила В двил<ении тел, происходящем под действием их тяжести, общий центр тяжести этих тел не может подняться выше первоначального положения . Близкие к этому высказывания делались Галилеем, Торричелли, Стевином и другими. Но далее Гюйгенс пишет Если бы изобретатели новых машин, напрасно пытающиеся построить вечный двигатель, пользовались этой моей гипотезой, то они легко бы сами осознали свою ошибку и поняли, что такой двигатель нельзя построить механическими средствами . А за два года до смерти он расширяет формулировку гипотезы В любых движениях тел ничего не теряется и не пропадает из сил, разве только в определенном действии, для осуществления которого требуется такое же количество силы, какое убыло силой же назовем потенцию, необходимую для поднятия груза двойная сила (Р) может поднять груз на вдвое большую высоту (/i), то есть Pihi= P2fi2. Поскольку P — mgh — потенциальная энергия тяжести,  [c.77]

Сочинение М. А. Леонтовича имеет следующие построение и содержание Раздел 1 — Основные понятия и положения термодинамики (состояние физической системы и определяющие его величины работа, соверщаемая системой адиабатическая изоляция и адиабатический процесс закон сохранения энергии для адиабатически изолированной системы закон сохранения энергии в применении к задачам термодинамики в общем случае (первое начало термодинамики) количество тепла, полученное системой термодинамическое равновесие температура квазистатические (обратимые) процессы теплоемкость давление как внешний параметр энтальпия обратимое адиабатическое расширение или сжатие тела применение первого начала к стационарному течению газа или жидкости процесс Джоуля—Томсона второе начало термодинамики формулировка основного принципа).  [c.364]


Используем общие определения параграфа 2 применительно к векторному соленоидальному полю завихренности и. Тогда из общих свойств векторных полей на основании теоремы Стокса (1.8) следует, что циркуляция Г по любому замкнутому стягиваемому контуру равна алгебраической сумме интенсивностей к всех вихревых трубок, пересекающих поверхность, ограниченную этим контуром. Это справедливо и в частном случае вихревых трубок бесконечно малого поперечного сечения — вихревых нитей. Обратим внимание на то, что понятие вихревая нить и вихревая линия отличны. Вихревая нить — это особая линия в распределении поля завихренности, полностью определяемая значением интенсивности к. В свою очередь — вихревая линия — это линия, касательная к которой в каждый момент времени совпадает с направлением мгновенной оси вращения жидких элементов. Применительно к описанию вихревого движения термины вихревые линии и нити ввел Г. Гельмгольц в (135). Он сформулировал основные свойства интегралов гидродинамических уравнений второго класса (так были названы течения, содержащие отличную от нуля завихренность в отличие от полностью потенциальных течений, весьма детально к тому времени изученных). Сформулированные в виде трех положений, эти свойства в дальнейшем названы законами или теоремами Гельмгольца для в 1хревого движения. Более столетия они встречаются в различных интерпретациях практически во всех учебниках по механике жидкости. Приведем эти законы в формулировках Г. Гельмгольца  [c.34]

В Поучении, приложенном к законам движения Ньютона, сделано несколько замечаний относительно важного свойства третьего закона. В 1742 г. Даламбер впервые сформулировал его таким образом, что стало действительно возможно выразить это свойство математически, и с тех пор оно известно под его именем ). Сущность его такова если тело подвергается ускорению, то его можно рассматривать как подвержс1Шое действию силы, равной и противоположно направленной к силе, производящей ускорение. Это можно считать одинаково правильным, нозмикла ли сила от другого тела, образующего с рассматриваемым систему, или источник ее находится вне системы. Вообще в системе любого числа тел равнодействующие всех приложенных сил равны и противоположны реакциям соответствующих тел. Другими словами, силы реакции или вызванные силы образуют системы, которые находятся в равновесии для каждого тела и для системы в целом. Это придает всей динамике форму статики и формулирует положения так, что они могут быть выражены математическими терминами. Эта формулировка третьего закона движения сделалась основной точкой для изящных и весьма общих исследований Лагранжа в вопросах динамики ).  [c.21]


Смотреть страницы где упоминается термин Общие положения и формулировка закона : [c.118]    [c.52]    [c.281]    [c.15]    [c.19]   
Смотреть главы в:

Теплотехника 1963  -> Общие положения и формулировка закона



ПОИСК



Закон сил общий

ОБЩИЕ ПОЛОЖЕНИЯ

Общая формулировка

Формулировка закона



© 2025 Mash-xxl.info Реклама на сайте