Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности взаимодействия металла и шлаков при сварке

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ МЕТАЛЛА И ШЛАКОВ ПРИ СВАРКЕ  [c.245]

При сварке металл всегда контактирует с окружающей средой. Это или газовая фаза (воздух, защитные газы, смеси газов и паров, вакуум и пр.), или шлаковые расплавы (различные окислы, галогениды, их смеси и т. д.), или и газы, и шлаки. В процессе сварки происходит взаимодействие металла, особенно перегретого выше температуры плавления, с этими газами и шлаками. Такое взаимодействие может быть для металла полезным, но в большинстве случаев портит его состав и свойства. Поэтому процессы взаимодействия металла с газами и шлаками при сварке следует обязательно учитывать и по возможности регулировать в нужном направлении.  [c.53]


Химические реакции, идущие на границе раздела двух фаз, особенно часто встречаются в сварочной металлургии при взаимодействии газов с металлом и шлака с металлом в зоне сварки. Скорость гетерогенных химических реакций зависит от величины границы раздела и от ее состояния, так как если граница раздела закрывается продуктами реакции (твердыми или жидкими пленками), то скорость химических реакций в этом случае будет лимитирована диффузионными процессами продуктов реакции через эти слои.  [c.241]

Реакционная зона сварки. При сварке флюс расплавляется, превращаясь в шлак, и начинает взаимодействовать с жидким металлом. Длительность их контакта в жидком состоянии невелика (4—60 с) и зависит от режима сварки. Однако несмотря на кратковременность, степень взаимодействия их может быть значительной. Этому способствуют высокие температуры в зоне плавления, до которых нагреваются металл и шлак, большие поверхности контакта, особенно на стадии капли, и сравнительно большая относительная масса активного шлака, составляющая в среднем 30—50% массы расплавляющего металла, что почти в 10 раз превышает соотношения при металлургических процессах.  [c.11]

Взаимодействие металла сварочной ванны с электролитом, который представляет собой расплавленный шлак, особенно проявляется при сварке под слоем флюса, электрошлаковом процессе и при сварке-покрытыми электродами.  [c.294]

Таким образом, при всех способах сварки под действием энергии активации металл в зоне соединения изменяется, происходит его деформация и (или) плавление с последующим затвердеванием. Металл может взаимодействовать с окружающей атмосферой, компонентами шлаков, происходит изменение его структуры. Поэтому сварные соединения, как правило, отличаются от основного металла структурой, химическим составом металла и механическими свойствами. Особенно велики эти отличия при сварке плавлением.  [c.9]

Работоспособность сварных соединений и сварных конструкций в целом во многом определяется качеством сварных швов. Вопросы надежности работы сварных конструкций в настоящее время приобретают все большее значение из-за их эксплуатации при высоких и низких температурах, в агрессивных средах, при больших рабочих напряжениях. При обработке материалов, в том числе и при сварке, практически всегда образуются различные дефекты. Вид дефектов и механизм их появления зависят от особенностей технологического процесса. При сварке плавлением образование дефектов определяется характером взаимодействия жидкого и твердого металлов, а также металлов с газами и шлаком. Жидкий металл растворяет определенное количество газов из воздуха и газообразных продуктов разложения электродного покрытия. Основными газами, влияющими на свойства металла и чаще всего присутствующими в металле, являются кислород, водород и азот. Водород физически растворяется в расплавленном металле, а кислород и азот с большим количеством металлов вступают в химическое взаимодействие. В процессе охлаждения вследствие снижения растворимости газов в металле происходит их выделение.  [c.228]


Особенности металлургии сварки. Применение при сварке мощных высококонцентрированных и высокотемпературных источников теплоты приводит к местному расплавлению основного и присадочного металлов и образованию сварочной ванны. Нагрев основного и присадочного металлов до расплавления, их последующее охлаждение и затвердевание сопровождаются фазовыми переходами в веществе. При сварке плавлением имеет место взаимодействие между жидким и твердым металлами, газом и жидким шлаком.  [c.50]

Особенности металлургических процессов при сварке плавлением. -К металлургическим процессам при сварке относятся процессы взаимодействия жидкого металла с газами и сварочными шлаками, а также взаимодействия затвердевающего металла с жидким шлаком.  [c.45]

В отличие от металлургических процессов в обычных сталеплавильных печах взаимодействие жидкого металла со шлаком и газами при дуговой сварке происходит весьма энергично, несмотря на кратковременность пребывания металла в жидком состоянии. Это обусловлено исключительно высокими температурами в зоне сварки и большими поверхностями контактирования взаимодействующих веществ, особенно при переносе электродного металла через дугу.  [c.47]

Покрытие электрода расплавляется несколько позже стержня, образуя небольшой чехольчик или втулочку. Равномерное расплавление покрытия обеспечивается при температуре плавления сварочного шлака ПОО— 1200°. Повышение тугоплавко сти шлака приводит к чрезмерному росту чехольчика, что нарушает нормальный процесс сварки. Расплавившийся сварочный шлак должен быть маловязким и легкоподвижным, обладать малым поверхностным натяжением и малым удельным весом. При этих условиях он легко взаимодействует с жидким металлом, всплывая на его поверхность, хорошо пропускает выделяющиеся из металла газы, хорошо растворяет и связывает окислы, равномерно покрывает расплавленный металл и способствует лучшему формированию сварного шва. Температурный интервал перехода шлака из жидкого в твердое состояние должен быть коротким (рис. 36, кривая 1). Шлаки с длинным температурным интервалом (кривая 2) менее подходят для сварки. Короткий интервал особенно необходим при сварке в вертикальном и потолочном положениях (см. главу VI), так как быстротвердеющий шлак удерживает жидкий металл от стекания. Для лучшего удаления после свар ки шлак должен хорошо раскислять металл шва и иметь отличный от металла коэффициент термического расширения.  [c.78]

Неправильный режим нагрева и охлаждения изделия в процессе сварки плавлением может стать причиной появления таких серьезных дефектов сварки, как трещины, непровары, подрезы и др. Тепловое состояние металла, шлака и других компонентов, взаимодействующих в процессе образования сварного соединения, в значительной мере обусловливает характер, направление н скорость протекания всех физико-химических и металлургических процессов. Величина и характер деформаций и напряжений, возникающих в конструкциях при сварке, зависят, главным образом, от цикла нагрева и охлаждения изделия, от характера температурных полей. Особенностями распределения тепла, скоростями отвода тепла и охлаждения места сварки определяется структура металла шва и различных участков основного металла, прилегающих к шву. Наконец, с тепловыми процессами непосредственно связаны такие важнейшие характеристики сварки, как скорость нагрева металла, скорость расплавления, производительность сварки и ее техникоэкономическая эффективность.  [c.95]

При сварке плавлением между расплавленным металлом, шлаком и окружающей газовой средой протекают сложные физико-химические процессы. Условия взаимодействия между реагентами в зоне реакции весьма своеобразны и имеют следующие особенности  [c.160]


Основные особенности металлургических процессов, протекающих при сварке, определяются следующими условиями высокой температурой процесса, небольшим объемом ванны расплавленного металла, большими скоростями нагрева и охлаждения, отводом теплоты в окружающий ванну основной металл и, наконец, интенсивным взаимодействием расплавляемого металла с газами и шлаками в зоне дуги.  [c.40]

В процессе сварочной операции расплавленный металл взаимодействует с окружающей его материальной средой (газами, неметаллическими расплавами — шлаками и пр.) и получает те или иные изменения, связанные с испарением некоторых составляющих при высоких температурах сварочного пространства, образованием различных химических соединений, нерастворимых в металле, и др. В целом эти изменения характерны как для расплавляемого основного металла, находящегося в сварочной ванне, так и для поступающего в ванну добавочного металла. Как правило, поступающий в ванну добавочный металл при основных способах сварки плавлением (электрическая дуговая сварка, особенно плавящимся электродом электрошлаковая сварка) нагревается до более высоких температур, чем в ванне, и имеет большую контактирующую со средой удельную поверхность (отношение поверхности к объему). Поэтому все процессы взаимодействия с окружающей средой, происходящие через поверхность и интенсифицированные более высокой температурой, приводят, как правило, к большему изменению состава добавочного металла, чем расплавляемого составного. Этот измененный в процессе сварки добавочный металл называется наплавленным металлом.  [c.16]

Об ЭТОМ можно судить, исходя из прироста закиси железа в шлаке в результате реакций восстановления кремния и марганца, а также на основании дефицита фосфора Д(Р) ШЛ ПО сравнению с исходной концентрацией. Участие остальной массы флюса-шлака в реакциях взаимодействия значительно уменьшается, особенно в верхней части шлаковой корки. Это вполне согласуется с данными работы [38] и, следовательно, знание соотношения количеств расплавленного флюса и металла еще не дает вполне однозначного представления об интенсивности окислительно-восстановительных реакций при сварке под флюсом.  [c.56]

Металлургические реакции, протекающие при электрошлаковол процессе, имеют свои особенности. Основными из них являются более низкие температуры металла, чем при дуговой сварке под флюсом более длительное время взаимодействия металла и шлака значительно меньшая активность шлака.  [c.56]

Высокие температуры, используемые при сварке плавлением, с одной стороны, понижают термодинамическую устойчивость оксидов, как это было показано в п. 9.2, но, с другой стороны, скорость их образования резко увеличивается и за очень небольшое время сварочного цикла металлы поглощают значительное количество кислорода. Поглощенный кислород может находиться в металле или в растворенном состоянии в виде оксидов (обычно низшей степени окисления), или субоксидов (TieO, TisO, Ti20), а также может создавать неметаллические включения эндогенного типа, образовавшиеся при раскислении металла более активными элементами. И то, и другое резко снижает качество сварных соединений, особенно пластичность металла шва. Исследования этого вопроса показали, что основная масса кислорода в металле обычно находится в неметаллических включениях [20]. Источниками кислорода в металле при сварке служат окислительно-восстановительные реакции между металлом и атмосферой сварочной дуги, металлом и шлаками, образующимися в результате плавления флюсов или при разложении и плавлении компонентов электродного покрытия, а также при взаимодействии с наполнителями порошковой проволоки.  [c.317]

Особенности металлургических процессов при сварке толстопокрытыми электродами. В общем виде схему процесса сварки толстопокрытым электродом можно представить следующим образом (рис. 15.11). Под действием высокой температуры дугового разряда плавятся электрод и кромки основного металла, образуя сварочную ванну. При плавлении конца электрода, как видно из схемы, нагреваеТ ся и плавится внутренний слой покрытия, которое у конца электрода принимает вид втулки. Шлак тонким слоем покрывает расплавленный металл конца электрода и капли. Несмотря на то, что капли электродного металла находятся в дуговом промежутке весьма малое время, необходимо учитывать результат и.х взаимодействия с газовой атмосферой дуги, состоящей из продуктов, выделяющихся при плавлении обмазки, — СОз, СО, Н2О, Нг. Пройдя дуговой промежуток, капли растворяются в сварочной ванне. При этом шлак всплывает на поверхность металла, вытесняется давлением дуги в стороны и, соприкасаясь с xoлoд ным металлом, застывает.  [c.358]

Большинство промышленно важных металлов взаимодействуют с кислородом и азотом с образованием химических соединений, которые или растворяются в металле, ухудшая его качество, или же удаляются в шлак. Поэтому весьма важно обеспечить надежную защиту зоны сварки от доступа воздуха. Особенно тщательной должна быть защита таких химически активных металлов, как титан, алюминий и их сплавы. С этой целЙю рекомендуется применять инертную атмосферу или инертный флюс. Такую же защиту рекомендуется применять при сварке сталей и сплавов, содержащих химически активные элементы. При сварке титана и его сплавов необходимо защищать не только зону сварки, но и участки металла, нагретые до температуры свыше 300° С.  [c.98]

Расплавившийся сварочный шлак должен быть маловязким и легкоиодвижным, обладать малым поверхностным натяжением и малым удельным весом. При этих условиях он легко взаимодействует с жидким металлом, всплывая на его поверхность, хорошо пропускает выделяющиеся из металла газы, растворяет и связывает окислы, равномерно покрывает расплавленный металл и способствует лучшему формированию сварного шва. Температурный интервал перехода шлака из жидкого в твердое состояние должен быть коротким <рис. 25, кривая /). Шлаки с длинным температурным интервалом кривая 2) менее подходят для сварки. Короткий интервал особенно необходим при сварке в вертикальном и потолочном положениях (см. гл. УП), так как быстротвердеющий шлак удерживает жидкий металл от стекания. Для лучшего удаления после сварки шлак должен хорошо раскислять металл шва и иметь отличный от металла коэффициент термического расширения.  [c.50]



Смотреть главы в:

Теория сварочных процессов  -> Особенности взаимодействия металла и шлаков при сварке



ПОИСК



Особенности взаимодействия

Особенности сварки

Р шлаковые

Сварка металла



© 2025 Mash-xxl.info Реклама на сайте