Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип равновесия Гиббса и состояния равновесия

ПРИНЦИП РАВНОВЕСИЯ ГИББСА И СОСТОЯНИЯ РАВНОВЕСИЯ  [c.54]

Можно принять во внимание даже такой случай, когда состояние системы определяется не координатами, фиксирующими положение в трехмерном пространстве. Так, например, Гиббс, Гельмгольц и другие установили соотношения, которые содержат температуру, электрическое состояние и другие подобные переменные и которые заключают в себе в качестве специальных случаев, принципы механики, в особенности принцип стационарного действия. Однако эти соотношения, с другой точки зрения, являются гораздо менее общими. Иногда они действительны исключительно для таких состояний, которые бесконечно мало отличаются от состояния равновесия далее, они содержат в себе неясности, чуждые механике, как, например, понятие энтропии, необратимости и многочисленные эмпирически полученные свойства температуры, электричества и т. д.. Представление о которых отнюдь не является таким простым, как представление о геометрических соотношениях точек.  [c.466]


Формула перемещений выводится с использованием термодинамического потенциала Гиббса, который для данной системы на основании принципа локального равновесия получается простым суммированием его плотности по элементам объема конструкции. Возможность подобного использования термодинамики для такого, по-существу, неравновесного состояния (неравномерное поле температур) основывается, как известно, на том, что время установления теплового-равновесия на много порядков больше времени установления механического равновесия. Это и даёт возможность использовать в данном случае методы классической термодинамики.  [c.55]

Изучаемая нестационарная открытая система первоначально не находится в равновесии со своим термостатом ее эволюция направлена в сторону достижения частичного равновесия системы с термостатом. С учетом того, что эволюцией системы управляют потенциалы (термодинамические силы), характеризующие состояние системы, Г.П. Гладышев [2] использовал для анализа открытых систем удельную величину функции Гиббса, отнесенную к единице объема или массы. Напомним, что в соответствии с функцией Гиббса движущей силой процесса для закрытых систем при постоянных температуре и давлении является стремление системы к минимуму свободной энергии (максимуму энтропии), если в системе не совершается никакая работа кроме работы расширения [17]. Гиббс предвидел широкие возможности термодинамики для решения различных задач, сделав следующие предсказания ...Несмотря на то, что статистическая механика исторически обязана возникновением исследованиям в области термодинамики, она, очевидно, в высокой мере заслуживает независимого развития как вследствие элегантности и простоты ее принципов, так и потому, что она приводит к новым результатам и проливает новый свет на старые истины в областях, совершенно чуждых термодинамике .  [c.21]

Распределение Гиббса можно в принципе применить и к замкнутой системе. Для этого надо вообразить, что она представляет собой часть нек-рой большой системы, т, и. теплового резервуара, находящегося в тепловом равновесии. Разумеется, распределение Гиббса для замкнутой системы пе будет точным, поскольку в состоянии с ф-цией расиределения (4) энергия системы будет флуктуировать, чего но должно быть. Однако эти флуктуации крайне малы, так что систему можно с большой степенью точности считать замкнутой, положив Ё = Ео — энергии замкнутой системы.  [c.73]


Введенный вновь материал распределен по всем трем разделам книги. В качестве неполного перечня новых вопросов отметим в ч. I параграфы, посвященные изложению термодинамики диэлектриков и плазмы, парадоксу Гиббса и принципу Нернста, в ч. II — теорию орто- и парамодификаций, теорию тепловой ионизации и диссоциации молекул, дебаевское экранирование, электронный газ в полупроводниках, формулу Найквиста и особенно главу Фазовые переходы , в ч. III — параграфы Безразмерная форма уравнений Боголюбова , Методы решения уравнения Больцмана , параграфы, посвященные затуханию Ландау, кинетическому уравнению для плазмы и проблеме необратимости. Существенно переработана и расширена глава Элементы неравновесной термодинамики , в которой помимо более детального рассмотрения области, близкой к равновесию, введен параграф, посвященный качественному рассмотрению состояний, далеких от равновесия.  [c.7]

Прямые сведения о теплофизических свойствах перегретых жидкостей отсутствуют. Не выяснены экспериментальные возможности проведения измерений в метастабильной области. Например, нет данных о том, как меняются плотность и сжимаемость веш,ества при больших п регревах. Существующие непрерывные уравнения состояния ван-дер-ваальсовского типа дают для изотерм характерную петлю, на которой точка перехода через линию насыщения ничем не выделяется среди соседних точек. Равновесие жидкой и газообразной фаз определяется из дополнительного условия Максвелла, которое эквивалентно требованию (1.1). С другой стороны, как было отмечено в 3, не слишком упрощенные разработки статистической теории реального газа на основе ансамбля Гиббса не описывают метастабильных состояний, но в принципе содержат линию равновесной конденсации (см. также [213, 2141). В этом случае любая докритическая изотерма имеет на границе двухфазной области угловую точку.  [c.230]

Рассматриваются отклонения от состояния равновесия. Приводятся условия равновесия в формулировке Гиббса. Вводится понятие свободной знергии. Шорму-лируется принцип минимальной работы. Приводятся локальные условия равновесия. Обсуждается вопрос об устойчивости и приводятся некоторые термодинамические неравенства.  [c.67]

По поводу применимости тождества Гиббса для неравновесных процессов в непрерывной термодинамической системе отметим следующее. Согласно принципу квазилокалъного равновесия (основного постулата неравновесной термодинамики) всю систему можно разбить на достаточно малые макроскопические области, каждую из которых можно рассматривать как равновесную (точнее квазиравновесную) термодинамическую систему. В случае, если в качестве переменных состояния смеси выбраны удельная плотность внутренней энергии е(г,Г), удельный объем v(r,r) и удельные концентрации Z (r,t) (а = 1,2,...,// )  [c.89]

Перейдем теперь к рассмотрению основной задачи данной главы для статистической сйстемы, находящейся в состоянии термодинамического равновесия, надо определить структуру смешанного состояния to , т.е. ввести распределение по микроскопическим состояниям v так, чтобы средние, вычисляемые с его помощью, соответствовали бы наблюдаемым макроскопическим величинам, т. е. тем, которые фигурируют в соотношениях квазистатической макроскопической термодинамики. Имеется ряд вариантов ги , эквивалентных и в термодинамическом смысле, и по построению. В этом и двух следующих парафафах мы рассмотрим три из них, из которых два последних наиболее употребительны на практике, й при рассмотрении первого наиболее четко выявляются основные принципы равновесной статистической механики. Все эти распределения принадлежат Джосайе Вилларду Гиббсу (J.W. Gibbs) и носят его имя. Он ввел их в 1901-1902 гг., когда никакой квантовой механики человечество еше не знало (она появилась 25 лет спустя), но идеи, которые он вложил в эти распределения, оказались обшими и совершенно нечувствительными к типу микроскопической теории. Мы сразу проведем наше рассмотрение на квантовом уровне, а затем отдельно совершим переход к классическому варианту описания микроскопических состояний и соответственно к классической статистической механике.  [c.31]



Смотреть страницы где упоминается термин Принцип равновесия Гиббса и состояния равновесия : [c.113]    [c.11]    [c.195]    [c.130]    [c.501]   
Смотреть главы в:

Материаловедение Технология конструкционных материалов Изд2  -> Принцип равновесия Гиббса и состояния равновесия



ПОИСК



Гиббс

Принцип равновесия Гиббса

Состояние равновесия



© 2025 Mash-xxl.info Реклама на сайте