Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие сведения о деформациях и напряжениях

ОБЩИЕ СВЕДЕНИЯ О ДЕФОРМАЦИЯХ И НАПРЯЖЕНИЯХ  [c.113]

Вот и перевернута последняя страница учебного пособия. Может быть, вы просто бегло просмотрели его, а может быть, досконально изучили - в любом случае вы убедились, сколь многообразна и интересна эта отрасль техники - сварка. Вы получили общие сведения о сварке узнали какие бывают группы способов сварки, какие различают сварные соединения и швы, как их узнать на чертеже сварной конструкции. Составили общее представление о металлургических и физических процессах в сварочной ванне и в металле сварного соединения, о технологической прочности и свариваемости металлов. Познакомились с особенностями расчетов сварных соединений на прочность и составили представление о сварочных напряжениях и деформациях.  [c.387]


В первой половине книги кратко и систематически изложены общие основы метода. При этом авторы приводят минимальные нужные сведения о законах оптики, достаточно полно рассматривают устройство полярископов и необходимого дополнительного оборудования, приемы работы с ними, а также используемые зависимости между двойным лучепреломлением и напряжениями и способы проведения измерений. Они сообщают данные об упругих и вязкоупругих характеристиках используемых в США для изготовления моделей материалов, которые близки к отечественным, и анализируют закономерности их деформирования в связи с исследованиями напряжений при упругих деформациях, при изменениях температуры и действии импульсных нагрузок. Наряду с этим рассмотрены методы исследования напряжений на объемных моделях из материалов, позволяющих фиксировать получаемый при деформации оптический эффект. Весьма кратко изложены основные методы обработки данных поляризационно-оптических измерений. Для более быстрого и полного решения задачи также рекомендуется использо-  [c.5]

Большая часть наших сведений о механических свойствах пластичных материалов почерпнута из испытаний на растяжение, в то время как в отношении хрупких материалов они устанавливаются из испытаний на сжатие. Для того чтобы обосновать назначение допускаемых напряжений в различных встречающихся на практике случаях сложного напряженного состояния, выдвигались различные теории прочности ). Такие ученые, как Ламе и Рэнкин, принимали в качестве критерия прочности наибольшее главное напряжение, но впоследствии, главным образом под влиянием таких авторитетов, как Понселе и Сен-Венан, общее признание получила теория наибольшей деформации. В соответствии с ней принималось, что текучесть или разрушение при любом сложном напряженном состоянии начинается, когда наибольшая деформация достигает определенного критического значения, которое устанавливается из испытаний на растяжение.  [c.440]

В гл. 1 излагаются необходимые сведения о механических испытаниях. Физическими носителями высокотемпературной пластической деформации являются дефекты решетки вакансии, дислокации, границы зерен кристаллов. Они вводятся в гл. 2. Гл. 3 посвящена общему рассмотрению зависимости скорости установившейся ползучести от температуры и приложенного напряжения. Приводятся и необходимые термодинамические соотношения. В гл. 4 описаны модели ползучести, контролируемой возвратом и термически активированным скольжением. Действие гидростатического давления, в особенности на вещество Земли — минералы и горные породы, — рассмотрено в гл. 5.  [c.9]


Проведенное рентгенографическое исследование позволило оценить степень фрикционного упрочнения при заданных условиях трения. Полученные результаты показали хорошую согласованность с результатами измерения микротвердости. Таким образом, использование результатов рентгенографического анализа и установленных соотношений механических свойств и параметров структуры деформированного металла позволило получить сведения о пластических деформациях и действующих на контакте напряжениях течения при сухом трении, согласующихся как с общей молекулярно-механической теорией трения, так и с рассмотренной в работе [15] моделью заедания.  [c.25]

Для решения поставленной задачи выберем несколько систем отсчета Во-первых, используем ортогональный лабораторный базис л , у, г. В этом базисе целесообразно записывать окончательные выражения и соответствующие операции в терминах инженерной механики пластичности, например конфигурационные тензоры деформаций г и напряжений усредненные по характерным объемам V, включающим большое количество малых участков (объемов кристалла, в которых реализуется каждый конкретный элементарный акт деформации или разрушения. Во-вторых, применим кристаллофизический базис, задаваемый тремя некомпланарными единичными векторами и, v, w, который в общем случае условимся считать косоугольным, а в практических расчетах — близким к ортогональному. В кристаллофизической системе координат такие свойства удобно выражать как тепловое расширение и упругую податливость. Справочные сведения о подобных характеристиках обычно представляют именно в кристаллофизическом базисе. В-третьих, будем широко пользоваться различными локальными базисами (которые в общем случае можно считать и неортогональными), выбирая их каждый раз так, чтобы форма записи соответствующих физических законов реализации процесса была предельно простой и понятной по содержанию. Так, если деформация осуществляется кристаллографическим сдвигом по плоскостям с нормалью п в направлении /, условимся задавать ее в базисе I, т, п, где направления I, т я п образуют тройку единичных ортогональных по отношению друг к другу векторов. Примером другой локальной системы отсчета может служить базис а, Ь, с, в котором удобно записывать условия раскрытия трещин отрыва. При этом условимся орт а ориентировать вдоль направления сдвига, инициирующего отрыв (например, по схеме Стро [2П), а вектор с — вдоль нормали к плоскости трещины. Понятно, что в этой схеме тройка единичных векторов а, Ь, с не обязательно образует ортогональный базис, а орт а может совпадать с ортом I из локальной системы сдвига. Однако базис целесообразно брать все же ортогональным.  [c.9]

Общие сведения. Цель работы — изучить зависимость между нагрузкой и деформацией вала, определить модуль сдвига О материала и главные нормальные напряжения в поверхностном слое вала.  [c.71]

В учебнике [12] вводная часть курса завершается изложением интегральных зависимостей между напряжениями и внутренними силовыми факторами г[ краткими сведениями об общем плане исследования основных видов деформаций бруса. Мы, тем не менее, отнюдь не считаем, что их изложение в этом месте курса необходимо. Все равно при рассмотрении отдельных видов деформаций бруса к ним придется возвращаться. Правда, когда они изложены, легче и убедительнее можно дать учащимся представление о том, как будут определяться напряжения в частных случаях работы бруса. Короче, следует или не следует излагать интегральные зависимости, предоставляется решать самому преподавателю в зависимости от его вкуса и, конечно, с учетом особенностей состава учебной группы.  [c.58]

В книге изложены общие сведения о физической сущности, классификации, возникновении и развитии сварки и краткие теоретические основы дуговой сварки описаны оборудование, электроды, технология ручной, гаэоэлеасгрической, полуавтоматической и автоматической сварки под флюсом, стыковая и точечная контактная сварка, технология сварки алюминиевых сплавов, стальных конструкций и арматуры железобетона, методы контроля качества сварки даны сведения о сварочных деформациях и напряжениях и мерах борьбы е ними, о газопламенной резке и сварке стали, организации сварочных работ, техлическом нормировании и ех-нике безопасности.  [c.2]


О кинетике изменения и величине внутренних деформаций и напряжений в околошовной зоне при сварке титана данных очень мало. Однако, располагая сведениями о коэффициенте линейного расширения титана (8,5 10 " 1/°С при 0—100° в сравнении с 11,7 10 1/°С для железа), о модуле упругости (11250 в сравнении с 21000 кГ/мм для железа) и характере изменений удельного объема при протекании фазовых превращений, можно в первом приближении оценить знак и порядок величин остаточных деформаций и напряжения. Превращение [3 а в титане и его а- и а + 13-снлавах, а также превращение (3 со в а+13-сплавах титана протекают пе с увеличением объема, как превращение а в железе и стали, а с небольшим уменьшением его. Едипствепное превращение в титане и его сплавах, которое происходит с увеличением объема, — это гидридное (на 15% при Т1Н 100%). Однако расчеты показывают, что при содержании 0,01% Ы изменение удельного объема технического титана вследствие гидридного превращения не превышает 0,1%. При полном превращении аустенита в мартенсит, например в стали с 0,38% С и 1,4% Сг, удельный объем увеличивается в среднем на 5%, т. е. в 50 раз больше Столь малый общий объемный эффект гидридного превращения в око.яо-шовной зоне, вероятно, не может привести к изменению знака остаточных продольных растягивающих деформаций и напряжений первого рода.  [c.49]

Основным источником сведений о механических свойствах материалов служит опыт на растяжение. Призматический образец растягивается напряжением а (рис. 1.7.3), измеряется его длина I или расстояние между двумя нанесенными рисками. До растяжения эта длина равнялась 1о, приращение длины А1-=1 — 1о называется удлинением, а отношение е = AZ/Zo называется относительным удлинением. (Иногда вместо слова удлинение мы будем употреблять более общий термин — деформация.) Если о меняется онределепным известным нам образом как функция времени, говорят, что задана программа испытания o(i). При этом физическое время t не играет роли, важно не протекание процесса во времени, а последовательность событий. Формально это означает, что программы o(f) и о(т) тождественны, если т есть произвольная монотонная функция t. С изменением а меняется е, если s = a(t), то e = e t). Будем наносить в плоскости G — е точки, соответствующие одинаковым значениям времени t.  [c.34]

М. Л. Козловым [285] сделана интересная попытка построения механико-математической модели определения остаточных напряжений непосредственно в процессе нанесения покрытий. Преимуществом такого подхода по сравнению с механическими методами, основанными на послойном удалении, является возможность проведения неразрушающих испытаний. Остаточные напряжения в этом случае могут быть определены с привлечением математического аппарата механики деформируемого твердого тела. Разработан общий принцип неразрушающих методов исследования остаточного напряженного состояния покрытий, заключающийся в том, что вместо данных о деформации основного металла с покрытием предлагается использовать сведения о величине внешних силовых факторов, непрерывно удерживающих композицию основной металл — покрытие в исходном состоянии либо возращающих ее в это состояние. Применение общего принципа неразрушающих методов дает возможность вычислять остаточные напряжения без привлечения классической расчетной схемы, для которой необходимо построение различных моделей нанесения покрытия -в зависимости от вида стеснения и формы покрываемого образца [285].  [c.188]

Располагая теперь некоторыми сведениями о свойствах монокристаллов, мы можем лучше понять и результаты испытаний поликристаллических образцов обычного типа. Юинг и Розен-хайн ) поставили весьма интересные опыты на растяжение образцов из полированного железа. Микроскопическое исследование поверхности металла обнаружило, что даже при сравнительно низких растягивающих нагрузках на поверхности некоторых зерен появляются полосы скольжения . Эти полосы свидетельствуют о том, что по определенным кристаллографическим плоскостям в этих зернах происходит скольжение. Поскольку упругие свойства в отдельном кристалле могут резко отличаться в разных направлениях и поскольку отдельные кристаллы размещаются в общей массе беспорядочно, постольку напряжения в растягиваемом поликристаллическом образце распределяются неравномерно, и скольжение может произойти в отдельных наиболее неблагоприятно ориентированных кристаллах прежде, чем среднее растягивающее напряжение достигнет значения предела текучести. Если такой образец разгрузить, то кристаллы, подвергшиеся скольжению, не смогут вернуться полностью к своей первоначальной форме, в результате чего в разгруженном образце останутся некоторые остаточные напряжения. Некоторое последействие в образце может быть приписано именно этим остаточным напряжениям. Пластическая деформация отдельных кристаллов содействует также потерям энергии при последовательных загружениях и разгрузках и увеличивает площадь гистерезисной петли, о которой шла речь на стр. 426. Если этот уже испытанный образец подвергнуть растяжению вторично, то зерна, в которых имело место скольжение, не будут пластически деформироваться, пока растягивающая нагрузка не достигнет значения, отмеченного при первом загружении. Лишь когда вторичная загрузка превысит это значение, вновь начнется скольжение. Если образец после предварительного растяжения подвергнуть сжатию, то сжимающие напряжения в сочетании с остаточными напряжениями (возникшими при предварительном растяжении) повлекут за собой текучесть в наиболее неблагоприятно ориентированных кристаллах, прежде чем среднее сжимающее напряжение достигнет того значения, при котором в первоначальном состоянии образца в нем возникают полосы скольжения. Поэтому цикл испытания на растяжение повышает предел упругости при растяжении, но при этом  [c.436]


Учитывая приведенные сведения и другие аналогичные результаты, можно сделать вывод, что пока не существует общей теории, которая позволяла бы точно описывать ползучесть и предсказывать разрыв при циклическом изменении температуры в условиях действия постоянного напряжения или при циклическом изменении напряжения в условиях действия постоянной температуры. Тем не менее в последнее время достигнуты некоторые успехи в разработке методов оценки долговечности с учетом одновременного проявления эффектов ползучести и усталости. Например, при прогнозировании возможности разрушения в условиях совместного действия ползучести и усталости при изотермическом циклическом нагружении иногда предполагается, что процесс ползучести определяется величиной среднего напряжения цикла а , а процесс усталости — амплитудой напряжения цикла о , причем эффекты обоих процессов суммируются линейно. Такой подход сходен с построением описанной в гл. 7 диаграммы Смита, за исключением того, что вместо отрезка Стц на оси Ощ (рис. 7.59) используется показанный на рис. 13.15 отрезок (Т,,,, соответствующий значению предельного статического напряокения ползучести. Предельное статическое напряжение ползучести представляет собой либо напряжение при предельной деформации ползучести, либо напряжение при разрыве в процессе ползучести в зависимости от того, какой вид разрушения более опасен.  [c.454]


Смотреть страницы где упоминается термин Общие сведения о деформациях и напряжениях : [c.29]    [c.263]   
Смотреть главы в:

Газовая сварка и резка металлов Издание 3  -> Общие сведения о деформациях и напряжениях



ПОИСК



597 — Деформации и напряжения

Деформации и напряжения при сварке Общие сведения

Общие сведения. Причины возникновения сварочных напряжений и деформаций



© 2025 Mash-xxl.info Реклама на сайте