Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пространственные задачи о концентрации напряжений

Пространственные задачи о концентрации напряжений 283 1-2у, 1-2у, За 2-6 3-2у) Ал +18А  [c.283]

Пространственные задачи о концентрации напряжений  [c.283]

Рассматриваемая ниже задача представляет собою пространственный аналог той плоской задачи о концентрации напряжений, которая была рассмотрена в предыдущем параграфе. Бесконечно упругое пространство растягивается во всех направлениях равномерно, в этом пространстве содержится сферическая полость радиусом а. Употребляя тер(Мин упругое пространство , мы должны представить себе тело достаточно больших размеров (линейный размер Ь) на границе которого приложена нагрузка, создающая в нем равномерное растяжение во всех направлениях с интенсивностью о. Если тело не содержит полости, т. е. нет второго характерного размера, с которым можно сравнивать размер тела L, нет необходимости говорить о том, велик этот размер или мал. Но если речь идет о концентрации напряжений около полости радиусом а, коэффициент концентрации будет зависеть от малого параметра а/Ь и при стремлении этого параметра к нулю будет стремиться к некоторому конечному значению, которое не люжет зависеть ни от а, ни от L. Б> примере с вращающимся диском в 8.13 этот предельный переход был сделан явно, что оказалось возможным ввиду простоты задачи. Вообще, полагают этот малый параметр равным нулю с самого начала, это можно сделать, либо считая размер а бесконечно малым, либо размер L бесконечно большим. Делая второе предположение, мы приходим к представлению об упругом пространстве, т. е. об упругой среде, заполняющей все пространство.  [c.274]


Решение для элементарной задачи о концентрации напряжений в окрестности пространственной сферической полости в бесконечно протяженной среде при всестороннем растяжении получается из (9.36) и (9.37) для ра = О, рь = — о при Ь- оо. Нормальные напряжения при этом равны  [c.286]

В настоящую книгу, посвящённую пространственным задачам теории упругости, можно было бы включить наряду с тем материалом, который представлен, изложение теорем о существовании решений уравнений теории упругости, вариационных и других прямых методов решения пространственных задач и рассмотрение некоторых специальных вопросов, в первую очередь задачи Сен-Венана и ей родственных задач Митчелла и Альманзи, а также учения о концентрации напряжений в местах резкого изменения геометрической формы упругого тела. Выполнение такой программы превышает силы и возможности автора оно потребовало бы для изложения, могущего претендовать на полноту и обстоятельность, работы целого коллектива и книги совершенно иного объёма. Надо надеяться, что советская литература, располагающая капитальными трудами по теории упругости, со временем обогатится отдельными сочинениями и по указанным выше вопросам.  [c.7]

Первое издание книги Теория упругости анизотропного тела вышло в свет в 1950 г. За время, прошедшее с 1950 г., теория упругости анизотропного тела непрерывно развивалась и пополнялась все новыми и новыми исследованиями как серьезных проблем обш,его характера, так и частных задач, относяш,ихся к этим проблемам. Так, подведена строгая научная база под общую теорию и установлен ряд закономерностей, благодаря чему эта теория, разработанная впервые Сен-Венаном и П. Бехтеревым, если можно так выразиться, испытала свое второе рождение. Разработано множество частных проблем из области обобщенных плоской деформации, кручения, изгиба и решено очень большое количество частных задач, относящихся к этим проблемам. Рассмотрены и решены новые задачи о кручении и изгибе тел вращения, концентрации напряжений в пространственных системах — в строгой постановке и т. д. Весьма существенно, что разработано и сконструировано много совершенно новых анизотропных материалов, обладающих рядом преимуществ перед известными до сих пор (например, армированные стеклопластики). Таким образом, за четверть века данная отрасль науки значительно шагнула вперед как в теоретическом отношении, так и в чисто практическом, по части конструирования новых анизотропных материалов. Тем не менее, то, что было сделано по теории упругости анизотропного тела до 1950 г., не потеряло своего значения и в наше время (70-е годы XX века) и, как нам кажется, нуждается в повторении (частично в новой редакции) и во втором издании книги.  [c.8]


Пространственная задача о концентрации напряжений в бесконечном теле, ослабленном полостью в виде трехосного эллипсоида, рассматривалась Садовским и Штернбергом (Sternberg) [1], Грином и Снеддоном [1]. В этих работах рассморены нагрузки, приложенные симметрично относительно главных плоскостей эллипсоидальной полости или плоскости двумерной трещины.  [c.423]

В общем случае поставленная задача представляет собой пространств, задачу У. т., решение к-рой трудно осуществимо. Точные аналитич. решения имеются лишь для нек-рых частных задач об изгибе и кручении бруса, о контактном взаимодействии двух тел, о концентрации напряжений, о действии силы на вершину конич. тела и др. Т. к. ур-ния У. т, являются линейными, то решение задачи о совместном действии двух систем сил получается путём суммирования решений для каждой из систем сил, действующих раздельно (принцип суперпозиции). В частности, если для к.-н. тела найдено решение при действии сосредоточенной силы в к.-л. произвольной точке тела, то решение задачи при произвольном распределении нагрузок получается путём суммирования (интегрирования). Такие решения получены лишь для небольшого числа тел (неограниченное пространство, полупространство, ограниченное плоскостью, и нек-рые др.). Предложен ряд аналитич. методов решения пространственной задачи У. т. вариационные методы (Ритца, Бубнова — Галёркина, Кастильяно и др.), метод упругих потенциалов, метод Бетти и др. Интенсивно разрабатываются численные методы (конечно-разностные, метод конечных элементов и др.). Разработка общих методов решений пространственной задачи У. т.— одна из н-аиболее актуальных проблем У. т.  [c.788]

Автоматизированные системы дискретизации и поэтапное рассмотрение результатов решения приводят к получению для всего корпуса реактора с крупноэлементной сеткой на первом этапе усилий и напряжений вдали от зон концентрации на втором этапе полученные усилия и напряжения используются для задания граничных условий для зон концентрации, в которых сетка существенно сгущается. На втором этапе получается информация о местных напряжениях если в реакторе имеет место наложение зон концентрации (например, щелевые швы в местах приварки труб к крьццке), то в расчет может быть введен третий этап с еще более измельченной сеткой, когда местные напряжения в зоне концентрации с умеренными градиентами напряжений определяют граничные усилия для установления напряжений в зоне концентрации с большими градиентами напряжений. При решении пространственных краевых задач для стадии упругих деформаций может быть использован метод ГИУ.  [c.36]

В последние годы для анализа напрнжений и деформаций в атомных реакторах интенсивно развиваются вычислительные методы с использованием ЭВМ [4, 7, 11 и др.]. Это в первую очередь относится к матричному методу теории пластин и оболочек, методу конечных элементов (МКЭ), методу конечных разностей (МКР). Первый из указанных методов позволяет достаточно точно и быстро рассматривать корпусные осесимметричные конструкции (зоны фланцев, днищ, крышек, нажимных колец) с широкой вариацией условий механического и теплового нагружения и выходом в неупругую область деформаций. Метод конечных разностей использовался для решения контактных задач в области главного разъема корпусов ВВЭР. Наибольшее распространение в инженерной практике в СССР и за рубежом получает метод конечных элементов. Этот метод является достаточно универсальным как для зон с относительно невысокой неоднородностью термомеханических напряжений, так и для зон с высокой концентрацией напряжений (в том числе щелевые сварные швы и дефекты типа трещин). В методе конечных элементов получает отражение одновременное решение тепловой задачи и задачи о напряженно-деформированном состоянии. Наиболее эффективно применение МКЭ для плоского и осесимметричного случая, когда в расчет может быть введена неоднородность механических свойств и стадия неупругого деформирования. Решение трехмерных задач методом конечных элементов сводится в основном к анализу пространственных относительно тонкостенных конструкций, а также к рассмотрению объемных напряженных состояний в ограниченных по размерам зонах (например, зона присоединения толстостенного патрубка к толстостенному корпусу).  [c.42]


Для пластических материалов вопрос о прочности в условиях концентрации напряжений также далеко не прост. Если разрушению предшествует значительная пластическая деформация в тех местах, где напряжения по расчету особенно велики, то материал перейдет в пластическое состояние, образуются пластические зоны. Напряженное состояние будет пространственным, сложным для его изучения нужно решать пространственную задачу теории пластичности, что удается лишь в немногих случаях. Экспериментальные методы определения напряжений в пластической области весьма сложны, и соответствующие измерения крайне немногочисленны. Таким образом, первая трудность состоит в нахождении величин напряжений при переходе за предел упругости. Вторая трудность заключается в установлении критерия прочности при сложном пластическом напряженном состоянии. Мы вернемся к этим вопросам в главе XVII, предварительно рассмотрев общую теорию напряженного состояния и общие законы пластичности, а пока ограничимся грубой трактовкой вопроса на базе элементарных представлений.  [c.69]


Смотреть страницы где упоминается термин Пространственные задачи о концентрации напряжений : [c.11]    [c.235]   
Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Пространственные задачи о концентрации напряжений



ПОИСК



Задача в напряжениях

Задача пространственная

Концентрация напряжений

Напряжения Концентрация — си. Концентрация напряжений



© 2025 Mash-xxl.info Реклама на сайте