Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее уравнение динамики. Аналитическая статика

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. АНАЛИТИЧЕСКАЯ СТАТИКА 6.1. Уравнения Лагранжа первого рода  [c.248]

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ. АНАЛИТИЧЕСКАЯ СТАТИКА  [c.250]

Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирования) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем Трактате об электричестве и магнетизме , касаясь значения Аналитической механики Лагранжа  [c.204]


Ж. Лагранж в трактате Аналитическая механика справедливо отмечает, что принцип равенства давлений по всем направлениям... является 1771 основой равновесия жидкостей . Однако сам Лагранж предпринял попытку вывода всех свойств жидкости в состоянии равновесия непосредственно из самой природы жидкостей, рассматривая последние как собрание молекул, сильно разобщенных, независимых друг от друга и способных совершенно свободно двигаться во всех направлениях . Лагранж предпринял новую систематизацию материала гидростатики. Он стремился все закономерности механики вывести чисто математически из единого принципа. Этим единым принципом всей механики Лагранжа была так называемая общая формула динамики (теперь называемая уравнением Даламбера — Лагранжа). В частном случае равновесия системы эта формула переходила в общую формулу статики (принцип возможных перемещений).  [c.177]

Применение криволинейных координат общего вида мы рассмотрим в части курса, посвященной аналитической механике в аналитической статике и в главах, содержащих уравнения Лагранжа 2-го рода и уравнения Гамильтона. В этой главе рассмотрим лишь полярные координаты точки на плоскости, координаты весьма удобные для решения многих задач динамики точки, например, задач о движении точки в центральных силовых полях.  [c.15]

Аналитические методы позволяют описать статику и динамику теплотехнических объектов управления с достаточной для решения многих задач степенью точности. Уравнения статики, как правило, получают на стадии теплотехнических расчетов обьекта. Описание динамики вновь проектируемых объектов обычно отсутствует. Дифференциальные уравнения являются наиболее общей формой описания динамических свойств объекта. Составление дифференциальных уравнений базируется на использовании физических законов, определяющих процессы в системе. При описании теплотехнических объектов используют уравнения теплового и материального балансов, уравнения теплообмена, теплопроводности и другие конкретные формы выражения основных физических законов сохранения энергии, вещества, количества движения и т.д.  [c.551]

Методы статики несвободной системы, изложенные в гл. XXVII, обобщаются и на динамику. Подобно тому как использование уравнения принципа возможных перемещений — общего уравнения статики — привело к различным формам уравнений равновесия (в декартовых координатах, в обобщенных зависимых и независимых координатах), точно так же из общего уравнения динамики выводятся аналогичные формы дифференциальных уравнений движения несвободной системы. Уравнения эти получили наименование уравнений Лагранжа, так как были впервые опубликованы в Аналитической механике Лагранжа.  [c.385]


Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]

Высокая степень систематичности изложения аналитического аппарата статики и динамики материальных систем, достиг-иутая в Аналитической механике Лагранжа, прекрасно осознавалась ее автором. Следуя стилю рационалистического механистического мировоззрения, прогрессивного для 18 века, Лагранж выражал это свое мнение, говоря, что он предложил себе свести теорию механики и способ решения относящихся к ней задач к общим формулам, простое развертывание которых дает все уравнения, необходимые для решения любой задачи . Та н е самая мысль выражена и в конце предисловия к первому изда-иию 1811 г., где Лагранж говорит, что методы, которые здесь излагаются, не требуют ни построений, ни геометрических или. механических рассуждений, но нуждаются исключительно в алгебраических операциях, подчиненных правильному и единообразному течению и что те, кто любит анализ, увидят с удовольствием, что механика сделалась его новой ветвью .  [c.3]

Аналитические методы позволяют описать статику и динамику тепловых объектов регулирования с точностью, достаточной для решения многих задач. Уравнения статики, как правило, получают на стадии теплотехнических расчетов объекта, а описание динамики вновь проектируемых объектов обычно отсутствует. Дифференциальные уравнения являются наиболее общей формой описания динамических свойств объекта. Составление дифференциальных уравнений базируется на использовании физичес-  [c.466]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]



Смотреть страницы где упоминается термин Общее уравнение динамики. Аналитическая статика : [c.416]    [c.13]    [c.2]   
Смотреть главы в:

Аналитическая механика  -> Общее уравнение динамики. Аналитическая статика



ПОИСК



70 - Уравнение динамики

Динамика аналитическая

Динамика общее уравнение

Общая динамика

Общие уравнения

Общие уравнения аналитической динамики

Статика

Статика аналитическая

Статика. Динамика

Уравнение динамики общее

Уравнение динамики общее статики общее

Уравнение статики, общее

Уравнения статики



© 2025 Mash-xxl.info Реклама на сайте