Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характер напряжений, возникающих при изгибе

Характер напряжений, возникающих при изгибе  [c.145]

Порядок разных компонент напряжения, возникающих при изгибе балки в плоскости zx, из-за различия ее геометрических размеров неодинаков компоненты r и пренебрежимо малы по сравнению с компонентой о д кроме того, вследствие характера напряженного состояния о у = Хуг, = Хху = 0. Таким образом, основными компонентами являются r = с и Тгж = т.  [c.528]

В реальных условиях деформирования на характер распределения напряжений, возникающих при вытяжке, существенно влияет ряд факторов упрочнение металла, силы контактного трения, изгиб и спрямление элементов заготовки при втягивании ее в матрицу, анизотропия механических свойств металла и пр.  [c.125]


Теория сопротивления усталости подшипниковых сплавов разработана слабо. Высказываются сомнения в возможности усталостного разрушения при пульсирующем цикле сжатия, поскольку разрушение непосредственно под действием сжимающих напряжений противоречит нашим представлениям. Однако оно может быть обусловлено касательными напряжениями, относительным удлинением, сопровождающим приложение сжимающей силы, остаточными напряжениями растяжения, возникающими в сплаве в итоге накапливающейся микропластической деформации с увеличением числа циклов, либо совместным влиянием этих факторов. В реальном подшипнике напряженное состояние металла в слое определяется не только приложенной нагрузкой, но и характером деформации корпуса подшипника в целом. Это означает, что если в материале слоя на жестком основании возникали бы под действием радиального усилия только напряжения сжатия, то изгиб корпуса подшипника с переменой знака кривизны вызывал бы растягивающие напряжения.  [c.230]

Катки нижней опоры выполняют цилиндрическими или бочкообразными. Последние более предпочтительны, так как на характер соприкосновения бочкообразного катка с колонной не влияют возникающие при изготовлении металлоконструкции перекосы. Катки рассчитывают по контактным напряжениям (см. 32). Обычно ориентировочный диаметр поверхности катания ролика р выбирают из соотношения р и (2,5...3)результатам расчета на изгиб при условии [<Тн] = <Гх/4.  [c.450]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]


Устройства, поддерживающие круглую форму трубы, нужно выбирать с учетом изгибных напряжений, возникающих в трубе. Напряжения в кривых трубах подробно изучены исследователями лишь в области упругих деформаций. Распределение напряжений в кривых трубах при появлении и развитии пластических деформаций изучено еще недостаточно. В работе [111 определен характер распределения продольных и кольцевых напряжений по сечению в гибе и выявлены наиболее напряженные участки. Два колена диаметром 219 мм со стенкой толщиной 7 мм и диаметром 325 мм со стенкой толщиной 9 мм с углом гиба 90° подвергли дальнейшему изгибу стягиванием концов усилиями Р = 1200 и 1400 кГ. Замеры деформации в гибе показали, что с увеличением стягивающих усилий быстро развиваются пластические деформации, причем в кольцевом направлении они значительно больше, чем в продольном (рис. 12). Особенностью пластических деформаций в кольцевом направлении является то, что они имеют местный характер, т. е.  [c.21]

Допуш,ения о характере деформаций. Пере.че-ш,ения, возникающие в конструкции вследствие упругих деформаций, невелики. Поэтому при составлении уравнений статики исходят из размеров недеформированной конструкции — принцип начальных размеров. Перемещения отдельных точек и сечений элементов конструкции прямо пропорциональны нагрузкам, вызвавшим эти перемещения. Конструкции (системы), обладающие указанным свойством, называют линейно деформируемыми. Необходимым условием линейной деформируемости системы является справедливость закона Гука (линейной зависимости между компонентами напряжений и дефор.маций) для ее материала. В некоторых случаях, несмотря на то, что материал конструкции при деформировании следует закону Гука, зависимость между нагрузками и перемещениями нелинейна (например, при продольно-поперечном изгибе бруса, при контактных деформациях). Линейно деформируемые системы подчиняются принципу независимости действия сил и принципу сложения (принципу суперпозиции). Согласно этим принципам, внутренние силовые факторы, напряжения, деформации и перемещения не зависят от последовательности нагружения и определяются только конечным состоянием нагрузок. Результат действия (перемещение и т. п.) группы сил равен сумме результатов действия каждой из сил в отдельности. При рассмотрении раздельного действия на конструкцию каждой из нагрузок необходимо учитывать соответствующие этой нагрузке опорные реакции. Для бруса в большинстве случаев справедлива гипотеза плоских сечений — сечения бруса, плоские и перпендикулярные к его оси до деформации, остаются плоскими и перпендикулярными к оси и после деформации. Эта гипотеза не справедлива, в частности, при кручении брусьев некруглого поперечного сечения. Для тонких пластин и оболочек принимают гипо-  [c.170]

При расчете на изгиб металлических пролетных строений эстакад необходим учет неравномерности распределения нормальных напряжений по ширине поясов. Она обусловлена влиянием деформаций сдвига, возникающих в срединной плоскости плитных элементов поясов, а также начальных искривлений ортотропных плит. Начальные искривления в большей или меньшей мере характерны для всех тонкостенных конструкций. Они образуются за счет провисания плит от собственного веса, неточностей изготовления, сварочных эффектов и др. Размеры искривлений. замеряемых на эксплуатируемых мостах, в основном не вносят заметных изменений в характер распределения нормальных напряжений по ширине сечений пролетных строений, и поэтому этим фактором в большинстве случаев при расчетах можно пренебречь. Поэтому более важным представляется учет неравномерности распределений напряжений, вызываемой сдвиговыми ослаблениями в плитах пролетных строений.  [c.281]

Из ряда способов, применяемых для устранения площадки текучести отожженного материала, наиболее выгодным является дрессировка, так как после нее старение происходит медленнее, чем после правки растяжением или изгибом (на роликоправильных машинах) [7].. Это связано с характером и величиной остаточных напряжений, возникающих в материале при неравномерной деформации во время дрессировки [7, 103]. После дрессировки листы не рекомендуется править растяжением, так как прн этом снимается положительное влияние дрессировки на площадку текучести. Править листы лучше на роликоправильных машинах. После правки на роликоправильных машинах материал стареет медленнее, особенно, когда для правки используют правильные  [c.157]


Влияние режимов нагружения. Режим нагружения стандартных образцов, осуществляемый на обычных испытательных машинах для построения кривых усталости, не типичен для эксплуатационных условий работы деталей машин. Каждая экспериментально полученная точка кривой характеризует прочность образца при непрерывном нагружении его постоянной по величине нагрузкой, а синусоидальный характер изменения напряжений, возникающих в сечении образца, обусловлен изгибом его при вращении с числом оборотов п = onst.  [c.31]

Разработаппыс новые конструкции клиновых ремней потребовали создания специальных стендов для испытания ремней. Так, предложены стенды для оценки долговечности (продолжительности работы до разрушения) ремней [10], а также устройство для автоматической регистрации времени испытания на стендах [11]. Исследовали влияние ряда факторов как производственного характера [12], так и условий работы стенда (способ натяжения ремней [13], тип тормозного устройства [14], схема нагружения [15]). Для прогнозирования срока службы клиновых ремней, применяемых на крутильных машинах (в производстве пряжи), использовали метод планирования эксперимента [16]. Экспериментальную проверку осуществляли на специальном стенде [17]. Установлена зависимость числа пробегов и от напряжения 0р, возникающих при установке ремня, от напряжений изгибов в ремне на ведущем шкиве аизг. вед и на отклоняющем ролике Оизг. р  [c.78]

Разрушение болтов может носить также често усталостный характер от дополнительных напряжений изгиба, вызываемых недостаточной жесткостью кривошипной головки и неиараллельностью опорных поверхностей головки болта и гайки. Величина этих напряжений не может быть учтена расчетным путем. По опытным данным, напряжения изгиба могут составить 25—30% напряженрш растяжения, возникающих при затяжке. Для снижения напряжений изгиба уменьшают диаметры головки болта и гайки и применяют сферические опоры.  [c.454]

Явление концентрации напряжений характеризуется высокими значениями градиента изменения напряжений. Так, например, величина градиента изменения напряжений в точке К широкой пластины в направлении у (фиг. 408 и 409) значительно больше, чем для узкой пластины (фиг. 411). Иногда сравнительно резкое изменение напряжений, возникающих в поперечных сечениях изгибаемого кривого бруса большой кривизны, относят к концентрации напряжений. Это объясняется несколько большим градиентом измзнения напряжений в кривом брусе, чем в прямом. Однако напряжения как в прямом, так и в кривом брусе при изгибе не носят локального характера и напряженное состояние при чистом изгибе кривого бруса является во всех частях бруса близк1М к однооснсму.  [c.624]

Обкатка конструкций. Тонкостенные конструкции при сварке испытывают деформации не только в результате продольной и поперечной усадок и изгиба, но часто и от потери устойчивой формы равновесия. Это происходит вследствие образования напряжений сжатия, возникающих, как правило, в околощовных зонах параллельно швам. Потеря устойчивости, сопровождаемая искривлением, определяется величиной остаточных напряжений сжатия, характером их распределения по элементу, геометрическими размерами элементов, жесткостью его закреплений. Для устранения возможности потери устойчивой формы равновесия прибегают к мероприятиям конструктивного и технологического характера. К первой группе относятся следующие сокращение свободной длины тонкостенных элементов, приварка к ним элементов жесткости, например в форме ребер повышение жесткости закреплений. В некоторых случаях реализация указанных мероприятий не может быть осуществлена. При этом на помощь приходят технологические способы.  [c.168]


Смотреть страницы где упоминается термин Характер напряжений, возникающих при изгибе : [c.197]    [c.222]   
Смотреть главы в:

Сопротивление материалов  -> Характер напряжений, возникающих при изгибе



ПОИСК



Как они возникают

Напряжение изгибающие

Напряжение при изгибе

Напряжения Напряжения изгиба



© 2025 Mash-xxl.info Реклама на сайте