Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построение моделей и идентификация объектов

Построение моделей и идентификация объектов  [c.70]

Совершенно очевидно, что практическая реализация описанных выше в обш,ем виде процессов преобразований и формирования трехмерных геометрических моделей наземных сцен допускает использование различных подходов и процедур на каждом уровне представлений. Такие отличия основываются на различных особенностях конкретных сцен и объектов, возможности идентификации их характерных черт в двумерных представлениях, сложности и подробности построения трехмерных структур, точностных характеристиках исходной информации и формы представления конечной трехмерной геометрической модели и т. д.  [c.163]


При экспериментальном анализе (или идентификации) объектов исходной информацией для построения математических моделей служат сигналы, доступные непосредственному измерению. Входные и выходные сигналы объекта обрабатываются с использованием методов идентификации, которые позволяют описать соотношения между этими сигналами в виде некоторой математической зависимости. Полученная модель может быть непараметрической (например, переходная функция или частотная характеристика, заданные в табличной форме) или параметрической (например, системы дифференциальных или разностных уравнений, зависящих от параметров). Для построения непараметрических моделей обычно применяются методы, основанные на преобразовании Фурье или корреляционном анализе. Параметрические модели получают с помощью статистических методов оценки параметров или методов настройки параметров по заданным частотным характеристикам или реакциям на ступенчатое воздействие. При синтезе алгоритмов для управляющих ЭВМ целесообразно пользоваться параметрическими моделями, поскольку современная теория систем в основном ориентирована на описание объектов, содержащее параметры в явной форме. Кроме того, для синтеза алгоритмов управления по параметрическим моделям могут применяться аналитические методы.  [c.71]

Средства цифровой техники, т. е. управляющие ЭВМ и микропроцессоры, открывают значительно более широкие возможности для построения адаптивных регуляторов (или адаптивных алгоритмов управления), нежели применявшиеся до недавних пор аналоговые вычислители. Стремительное развитие технологии производства цифровых интегральных схем создало предпосылки для практического внедрения сложных законов управления, которые либо вовсе нельзя реализовать с помощью аналоговой техники, либо принципиально возможно, но лишь ценой неприемлемых затрат. Следует отметить, что сама форма описания регуляторов и моделей динамических объектов в дискретном времени обладает существенными преимуществами по сравнению с описанием в непрерывном времени, позволяя упростить как синтез алгоритмов, так и их техническую реализацию. Для создания адаптивных алгоритмов управления, отвечающих требованиям практики, большое значение имели также результаты новых теоретических исследований в области цифрового управления и идентификации, проводившихся начиная примерно с 1965 г. Не удивительно поэтому, что интерес к проблемам адаптивного управления за последние 10 лет существенно возрос. Немало статей по вопросам адаптации публиковалось и в 1958—1968 гг. Однако большинство из них было посвящено методам обработки непрерывных сигналов с помощью аналоговых вычислителей. Обзоры первых работ по адаптивным системам можно найти в [22.1] — [22.10]. Сложность реализации систем этого типа и, самое главное, отсутствие универсальных методов их построения  [c.348]


На основе рассмотренных в этой книге методов проектирования алгоритмов управления с обратными и прямыми связями могут быть разработаны программы, позволяющие проектировать алгоритмы управления в диалоговом режиме. Необходимым предварительным условием является, конечно, знание соответствующих математических моделей объектов управления и, возможно, моделей сигналов. Разработка моделей может осуществляться как теоретическими методами, так и с помощью процедуры идентификации, описанной в разд. 3.7.4. Теоретические методы построения модели должны использоваться, если объект не доступен для исследования, например находится в стадии разработки. Однако существует ряд естественных факторов, ограничивающих точность теоретической модели. К ним относятся ограниченная точность получаемых данных и параметров объекта, упрощающие допущения, используемые при выводе уравнений модели, а также неточности задания моделей привода, регулирующих элементов и датчиков. В частности, для многих промышленных объектов (химической, энергетической и тяжелой промышленности) физические или химические законы либо неизвестны, либо не могут быть выражены с помощью разумного числа математических уравнений. Поэтому, измеряя динамические характеристики существующего объекта, т. е. используя методы идентификации, можно построить модель значительно быстрее и с большей степенью точности. Это может быть выполнено вне связи с объектом на автономной ЭВМ либо, если вычислитель уже состыкован с объектом управления, в режиме нормальной эксплуатации. Поскольку для расчета алгоритмов управления более всего удобны параметрические модели объектов управления, применимы методы  [c.483]

Под идентификацией (математическим описанием) объекта понимается построение символической модели, устанавливающей закономерность между выходными и входными переменными объекта, которая дает возможность определить с заданной точностью выходную переменную объекта — оригинала по ее входным переменным. Основным методом построения математической модели объекта управления является статистический, т. е. метод, основанный на статистической динамике систем автоматического управления.  [c.13]

В тех случаях, когда в качестве основного носителя диагностической информации используется какой-либо сложный сигнал, например, шум механизма, переходная или импульсная переходная характеристика и т. п., для построения математической модели объекта диагностики могут применяться методы теории идентификации [23], Сущность использования этих методов состоит в построении структурной схемы диагностируемой машины в виде блоков, каждый из которых может быть представлен каким-либо типовым звеном, для которого известно  [c.216]

Задача идентификации. Идентификация понимается как построение математической модели функционирующего объекта (системы) по априорной информации и измерительным данным В общем случае математическая модель представляется в виде функционального уравнения  [c.348]

Динамическая модель. Одним пз способов построения диагностической модели механического объекта является математическое описание связи между структурными и диагностическими параметрами с помощью дифференциальных или алгебраических уравнений (типичная задача идентификации).  [c.386]

В разд. 15.3 рассматривались оптимальные регуляторы состояния для стохастических возмущений, синтез которых связан с минимизацией критерия качества (15.1-5) и в которых используется оценивание переменных состояния. Вывод уравнения такого регулятора состояния выполнялся на основе изложенной в гл. 8 методики построения регуляторов состояния для детерминированных возмущений. В этой главе приведен другой метод, основанный на принципе минимальной дисперсии, о котором шла речь в гл. 14. Такой подход использует предсказание характеристик шума и оказывается особенно эффективным для адаптивного управления многомерными объектами. Для получения стохастических регуляторов с минимальной дисперсией воспользуемся моделью в пространстве состояний (что оказывается удобным для идентификации)  [c.345]


Методы решения задач второй группы основаны на применении составных моделей. При геометрическом моделировании трехмерных объектов можно выделить следуюш,ие процедуры построения составной модели из набора базовых модификации модели сечения модели объекта плоскостью общего положения с выводом изображения сечения идентификации точек, ребер, граней и объемных элементов на трехмерной модели с выводом их двухмерных изображений расчета геометрических и механических параметров объектов (объем, масса, площадь, момент инерции и т. п.) развертки поверхности на плоскость. Разработано несколько систем моделирования трехмерных объектов, позволяющих решать такие задачи [1].  [c.251]

Большое место в книге уделено алгоритмам параметрической идентификации, методам построения самооптимизирующихся цифровых адаптивных систем управления и вопросам их практического применения. Рассмотрены также некоторые проблемы реализации цифровых систем, в том числе фильтрации помех и учета характеристик исполнительных устройств. Читатель может сделать вывод, что в большинстве случаев синтез дискретных систем не отличается особой сложностью, если в распоряжении проектировщика имеются математические модели объектов управления, причем для построения моделей и расчета управляющих алгоритмов целесообразно использовать те же цифровые вычислители. Следует отметить, что разностные уравнения, описывающие функционирование дискретных систем, значительно проще с точки зрения их анализа и программной реализации, нежели дифференциальные уравнения, применяемые для описания непрерывных систем.  [c.9]

Результаты автоматизированного эксперимента целесообразно использовать при построении и идентификации математической модели, диагностике технического состояния объекта, разработке рекомендаций по повьш1ению динамического качества конструкции, проведении сравнительных испытаний объектов новой техники, разработке и совершенствовании методов и средств анализа вибрационных сигналов.  [c.124]

На основании сказанного выше очевидно, 4to под построением динамической модели одномерного технологического процесса понимают нахождение оператора, ставящего в соответствие входную X (s) и выходную Y (t) функции объекта. При этом существенно, что при идентификации оператор объекта А (t) в формуле (10.1) находится по результатам измерений X (s) и К (t), полученным в процессе нормального функционирования объекта. Результаты измерений X (s) и У t) рассматривают как реализацию случайных функций X (s) и У (t). По реализациям X (s) и У (О ставится задача определения не самого оператора А , а его оценки A t, которая и используется в качестве характеристики неизвестного истинного оператора Естественно потребовать при этом близости в некотором смысле оценки At к истинному значению оператора Af. Графическая интерпретация сказанного иллюстри- Ряс. 10.2. Принципиальная схема руется на рис. 10.2. Имеется идентификации объекта  [c.321]

Математическая статистика рассматривает класс статических моделей. Методы идентификации разрабатываются для построения и уточнения математических моделей систем и объектов автоматического управления более широкого класса, включающего динамические модели (см. рис. 42). Поэгому основное развитие теория идентификации получила на базе методов теории автоматического управления [129]. Имеется тенденция использования методов математической статистики, например регрессионного анализа, совместно с методами теории автоматического управления в задачах испытания динамических систем [130].  [c.161]

Работоспособность всех алгоритмов управления и фильтрации должна анализироваться с учетом эффектов квантования по уровню. На рис. 2.4 представлена общая схема процесса проектирования цифровых систем управления. Если для параметрической оптимизации простых алгоритмов управления применяются несложные процедуры подстройки параметров, то можно ограничиться простейшими моделями объектов. При проведении однократного расчета алгоритмов на ЭВМ необходимы точные модели объектов управления и сигналов, для формирования которых наиболее целесообразно использовать методы идентификации и оценивания параметров. Если же процесс получения информации и расчета алгоритма управления носит непрерывный характер и может протекать в реальном времени, возможно построение самооптимизирующейся адаптивной системы управления.  [c.24]


Смотреть страницы где упоминается термин Построение моделей и идентификация объектов : [c.60]    [c.22]    [c.56]    [c.69]   
Смотреть главы в:

Цифровые системы управления  -> Построение моделей и идентификация объектов



ПОИСК



Идентификация

Идентификация модели

Идентификация объектов

Модель построение

Построение на объекте



© 2025 Mash-xxl.info Реклама на сайте