Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы линеаризованной теории упругости

ОСНОВЫ ЛИНЕАРИЗОВАННОЙ ТЕОРИИ УПРУГОСТИ  [c.34]

Глава 2. Основы линеаризованной теории упругости  [c.36]

Давая общую характеристику критериев разрушения, отметим, что если в качестве критериальной величины взять локальный параметр у вершины трещины (упругое раскрытие на малом расстоянии от вершины трещины, радиус кривизны вершины трещины, деформацию у вершины трещины, угол раскрытия, малую область разрушаемого материала с реакцией материала и т.п.), то все они дадут один и тот же конечный результат (после их применения) именно в силу локальности анализируемой области [39]. Подобные критерии составляют предмет линейной механики разрушения. Вообще, термин линейная механика разрушения относится к задачам о трещинах, поставленным в рамках линейной (линеаризованной) теории упругости. Наоборот, привлечение к анализу свойств пластичности материала приводит к потерям однозначных оценок, сопряженных с большим разнообразием моделей предельного состояния и разрушения. Критерии, построенные на этой основе, отвечают критериальным величинам интегрального толка, необратимо накапливающимся в ближней и дальней окрестностях трещины. В силу большого разнообразия возможных эффектов, в сравнении с критериями линейной механики разрушения, критерии нелинейной механики разрушения показывают большой разброс результатов не только между собой, но и с экспериментом. С этой точки зрения, имея в виду прикладные расчеты сложных технических систем, целесообразнее и надежнее (и спокойнее для конструктора) критериальные соотношения, основанные на модельных представлениях, заменить прямыми натурными или полу-натурными экспериментами.  [c.74]


В заключение следует подчеркнуть, что в основу доказательства существования и экспериментального нахождения постоянных Ламэ было положено асимптотическое разложение определяющего уравнения по степеням тензора деформации Грина — Сен-Венана Е = y (Va V + Va Va), а не линеаризованного тензора деформации уи Vи), который часто используется для этой цели. Последний подход страдает недостатком общности, ибо может возникнуть ошибочное впечатление, что постоянные Ламэ относятся только к линеаризованной теории упругости.  [c.160]

Здесь, на основе концепции Эйлера о разветвлении форм равновесия и выведенных в предыдущих параграфах нелинейных уравнениях изгиба, устанавливаются линеаризованные дифференциальные уравнения устойчивости многослойных композитных анизотропных оболочек. Подробное изложение этой концепции и методики получения пространственных линеаризованных уравнений устойчивости из нелинейных уравнений теории упругости приведено в монографии [206 ]. Для однородных изотропных абсолютно жестких на поперечные сдвиги и обжатие оболочек эти вопросы достаточно полно рассмотрены, например, в монографиях [85, 104, 189], а для многослойных анизотропных оболочек с ограниченной поперечной сдвиговой жесткостью — в монографиях [52, 60, 116].  [c.59]

Из сказанного следует, что к решениям динамических задач, полученным на основе линеаризованных уравнений, следует подходить с известной осторожностью даже тогда, когда обычные (для статики) условия применимости линейной теории упругости выполняются. Особенно это относится к тем случаям, когда влияние малых нелинейностей может постепенно накапливаться и со временем (в течение которого рассматривается процесс) стать значительным.  [c.26]

Линеаризованные постановки составляют основу теории упругости в рамках теории малых деформаций. Эта теория положена в основу великого множества методов расчета в технических задачах.  [c.350]

Приведенные выше соотношения явились основой вычислительных программ численного решения задач о напряженных, деформированных и предельных состояниях оболочечных конструкций, подверженных длительным статическим и малоцикловым воздействиям в условиях повышенных температур [8, 3, 15]. Разработанная в [15] программа исследования прочности сильфонов основана на линеаризованных уравнениях теории оболочек и уравнениях состояния (8.17). Для учета физической нелинейности материала оболочки используется метод переменных параметров упругости [10].  [c.160]


В этом параграфе исследование устойчивости равновесия радиально сжатой круговой слоистой трансверсально изотропной пластинки выполнено без привлечения кинематических гипотез. Его основу составили уравнения теории устойчивости трехмерных упругих тел. С развернутым изложением этой теории, включающим в себя постановку задачи, вывод соответствующих линеаризованных дифференциальных уравнений и граничных условий, обсуждение аналитических и численных методов исследования сформулированных краевых задач, решение конкретных задач устойчивости, заинтересованный читатель может ознакомиться по монографиям [125, 126]. Здесь ограничимся лишь формулировкой некоторых основных уравнений трехмерной теории устойчивости упругих трансверсально изотропных тел в системе координат, нормально связанной с плоскостью изотропии.  [c.151]

Применение уравнений трехмерной теории упругости к исследованию устойчивости упругих тел с учетом изменения их граничных поверхностей было предложено А.Ю. Ишлинским и Л.С. Лейбензоном [5, 6]. В трехмерной линеаризованной постановке в работах А. П. Гузя и его учеников [2, 7, 8, 9] были получены решения задач устойчивости анизотропных элементов конструкций, которые послужили основой для оценки точности различных прикладных теорий, использующихся в расчетной практике. Оказалось, что теория оболочек, в которой деформации поперечного сдвига учитываются в соответствии с гипотезой Тимошенко, позволяет находить критические нагрузки с незначительной погрешностью. Эта оценка относится и к таким интегральным характеристикам, как низшие частоты свободных колебаний оболочки из КМ. В то же время решение уравнений теории оболочек типа Тимошенко менее трудоемко, чем уравнений теории упругости, особенно в случае оболочек сложной геометрии. Такими, в частности, являются цилиндрические оболочки с волнообразной срединной поверхностью, которые при большом количестве волн принято называть гофрированными. Устойчивость последних рассматривалась в работах [10, 11] путем замены их эквивалентными ортотропными. Хотя экспериментальные данные обнаруживали более высокую эффективность гофрированных оболочек [10], приближенное дискретное решение не подтвердило возможности увеличения критических нагрузок за счет придания профилю поперечного сечения волнообразного характера. Недостатков приближенного подхода удалось избежать в работах [12-14], где устойчивость гофрированных оболочек рассматривалась с учетом изменяемости геометрических параметров по направляющей. Из проведенных авторами этих работ исследований вытекает, что при равновозможности общей и локальной форм потери  [c.105]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]



Смотреть страницы где упоминается термин Основы линеаризованной теории упругости : [c.34]    [c.331]   
Смотреть главы в:

Динамические контактные задачи для предварительно напряженных полуограниченных тел  -> Основы линеаризованной теории упругости



ПОИСК



Линеаризованная теория

Основы теории

Основы теории упругости

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте