Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние сил инерции переносного движения

Все эти явления вытекают из предыдущей теории. Правда, в предыдущих расчетах мы не учитывали влияния рамы, которая совершает колебания вокруг ребер призм вместе с осью тора. Легко, однако, убедиться в том, что рама не оказывает заметного влияния на величину девиации. В самом деле, единственными новыми силами, которые нужно было бы учесть в относительном движении оси тора, будут силы инерции переносного движения и сложные центробежные силы для всех точек рамы. Силами инерции переносного движения можно пренебречь вследствие малости угловой скорости вращения Земли, а сложных центробежных сил, имеющих сколько-нибудь заметную величину, нет, так как рама не участвует во вращательном движении тора.  [c.196]


ВЛИЯНИЕ СИЛ ИНЕРЦИИ ПЕРЕНОСНОГО ДВИЖЕНИЯ  [c.75]

Рис. 30, Расчетные схемы влияния сил инерции переносного движения Рис. 30, <a href="/info/143462">Расчетные схемы влияния</a> сил инерции переносного движения
Перейдем к учету влияния сил инерции. Силы инерции из-за вращения системы координат имеют при постоянной угловой скорости переносного движения силовую функцию (теорема 3.13.3)  [c.506]

Уравнение (51) выражает основной закон динамики для относительного движения точки. Сравнивая равенства (50) и (51), приходим к выводу все уравнения и теоремы механики для относительного движения точки составляются так же, как уравнения абсолютного движения, если при этом к действующим на точку силам взаимодействия с други.ни телами прибавить переносную и кориолисову силы инерции. Прибавление сил / ер и кор учитывает влияние на относительное движение точки перемещения подвижных осей.  [c.292]

Влияние силы инерции, возникающей в переносном поступательном движении машины незначительно.  [c.200]

Если система координат неинерциальна, то уравнения относительного движения отличаются от уравнений абсолютного движения. Силы инерции от переносного и кориолисова ускорен ний будут изменять движение точки. Если мы сравним решение уравнений при учете сил инерции с решением уравнений в инерциальной системе, то, естественно, получим разные результаты. Таким образом, мы можем, сравнивая результаты вычислений с опытом, определить, является ли рассматриваемая система координат инерциальной или же движется с ускорением по отношению к некоторой другой системе, которую можно в пределах точности опыта считать инерциальной системой. Для весьма большого класса механических задач систему координат, связанную с Землей, можно приближенно считать инерциальной системой координат, так как ошибки, получаемые при этом допущении, будут невелики. Однако при наблюдении падения тяжелых тел в глубоких шахтах было замечено отклонение их траектории от вертикали. Мы можем объяснить это отклонение влиянием сил инерции, так как система координат, связанная с Землей, строго говоря, не является инерциальной системой.  [c.275]


Этот результат можно истолковать очень наглядно, если сравнить его с условием абсолютного равновесия, заключающимся в том, что результирующая всех сил, приложенных к точке, должна быть равна нулю. Это значит, что равенство (1) можно рассматривать как условие абсолютного равновесия материальной точки, на которую, кроме силы F (действительно приложенной), действует еще добавочная сила х = — Эта фиктивная сила, которая, н условиях относительного равновесия, представляет влияние дви-. лсения осей и приводится к нулю не только тогда, когда эти оси неподвижны, но также и всякий раз, как щ = О, называется силой инерции, переносного движения.  [c.287]

Влияние сил инерции относительного движения. Для многих случаев применения гидросистем трубопровод, по которому движется жидкость, также перемещается в пространстве с тем или иным ускорением. Очевидно, на жидкость в этом случае будут действовать, помимо силы тяжести, еще и сила инерции переносного движения, значение которой может достигать при известных условиях больших величин. В частности, это относится к движению жидкости в трубопроводах гидросистем летательных аппаратов, ускорение которой в переходных режимах полета, а следовательно, и сила инерции переносного движения может достигать значительных величин. Так, например, инерционный напор (перепад давления) в магистрали при длине ее 3 л и возможной перегрузке (ускорении) 20 g может составлять около 5 кПсм .  [c.19]

Слагаемое r2 d(aldt) характеризует влияние на угол отклонения потока касательной силы инерции в переносном движении, возникающей при изменении угловой скорости лопастного колеса или другими словами, величину захлестывания потока в сторону, противоположную угловому ускорению лопастного колеса. Влияние этого явления возрастает с увеличением радиуса лопастного колеса на выходе и углового ускорения.  [c.14]

Рассмотрим теперь влияние вертикальных колебаний точки подвеса на устойчивость нижнего равновесного положения маят-HLiKa (рис. 7.11, а). Присоединим к силе тяжести маятника mg переносную силу инерции (1. — — т /, где у = а os шг — закон движения точки О по вертикали, и снова воспользуемся теоремой об измепении момента количества движения относительно оси вращения маятника  [c.255]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]


Влияние вращения Земли на равновесие и движение тел. При решении большинства технических задач мы считаем систему отсчета, связанную с Землей, неподвижной (инерциальной). Тем самым мы не учитываем суточное вращение Земли и ее движен1- е по орбите вокруг Солнца. Но для второго из этих движений соответствующая переносная сила инерции, которая должна войти в уравнение (51), практически уравновешивается силой притяжения Солнца (см. об этом подробнее в 128). Таким образом, считая систему отсчета, связанную с Землей, инерциальной, мы по существу пренебрегаем только ее суточным вращением вместе с Землей по отношению к звездам. Это вращение происходит со скоростью 1 оборот за 23 часа 56 минут 4 секунды, т. е. с угловой скоростью  [c.295]

Ур-ние (1) и все следствия из него справедливы только при изучении движения по отношению к т. н. инерц. системе отсчёта, к-рой для движения внутри Солн. системы с высокой степенью точности явл. звёздная система (система отсчёта с началом в центре Солнца и осями, направленными на удалённые звёзды), а при решении большинства инженерных задач — система отсчёта, связанная с Землёй. При изучении движения по отношению к неинерц. системам отсчёта, т. е. системам, связанным с ускоренно движущимися или вращающимися телами, ур-ние движения можно также составлять в виде (1), если к силе Р прибавить т. н. переносную и Корио-лиса силы инерции (см. Относительное движение). Такие задачи возникают при изучении влияния вращения Земли на движение тел по отношению к земной поверхности, а также при изучении движения рйзл. приборов и устройств, установленных на движущихся объектах (судах, самолётах, ракетах и др.).  [c.159]


Смотреть главы в:

Машиностроительная гидравлика  -> Влияние сил инерции переносного движения



ПОИСК



Влияние сил инерции

Движение переносное

Движение по инерции



© 2025 Mash-xxl.info Реклама на сайте