Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние фактора теплообмена

Влияние фактора теплообмена  [c.25]

Разделив коэффициент трения при заданных условиях теплообмена на соответствующее значение этого коэффициента для адиабатического обтекания при равенстве всех прочих условий, можно оценить влияние фактора теплообмена в чистом виде.  [c.25]

Как видно, относительное влияние фактора теплообмена на предельные законы трения и теплообмена в газе почти одинаково как при дозвуковом, так и при сверхзвуковом течениях. Поэтому для практических расчетов при больших числах Re можно применять сравнительно простую интерполяционную формулу  [c.26]


Кроме указанных выше факторов, на режим сушки лакокрасочных покрытий оказывает влияние интенсивность теплообмена, которая зависит от скорости движения воздуха и расположения изделия по отношению к потоку воздуха.  [c.172]

Достоинство псевдоожиженных систем — высокая интенсивность теплообмена между слоем и омываемыми им поверхностями. Особенно большие значения коэффициентов теплообмена даже при осуществлении процесса псевдоожижения в обычных условиях достигаются в слоях мелкодисперсных частиц. Многочисленные экспериментальные исследования подробно изложены в ряде монографий [12, 18, 20, 49, 50]. При этом механизм переноса тепла, в котором, безусловно, главная роль принадлежит теплопроводности системы, сложен и много- образен. Поэтому теории, объясняющей влияние всех факторов на теплообмен, до сих пор не существует. Однако отдельные аналитические модели не только качественно правильно отражают особенности внешнего теплообмена в псевдоожиженном слое, но и при определенных условиях позволяют делать удовлетворительные количественные оценки.  [c.57]

В Л. 32, 96, 286] наряду с данными о воздействии ряда рассмотренных выше факторов изучалось влияние температуры на теплообмен в трубчатых каналах (D = = Dt) при Д/ т>30 (вторая область теплообмена).  [c.341]

Влияние указанных факторов разберем на примере следующей задачи. На участок плоского канала длиной L действует с обеих сторон одинаковый тепловой поток q. Для улучшения условий охлаждения стенок внутри канала помещена однородная пористая вставка такой же длины L. Отличие в постановке задачи с короткой вставкой по сравнению с задачей с бесконечно длинной пористой вставкой заключается в условиях теплообмена на торцевых поверхностях. Для короткой вставки учитывается теплообмен между входной поверхностью и набегающим потоком с помощью обоснованных ранее условий  [c.112]

Следует заметить, что при некоторых специфических условиях теплообмена число влияющих факторов может увеличиться. Так, если теплоотдача сопровождается изменением агрегатного состояния теплоносителя, то на интенсивность теплообмена существенное влияние будут оказывать другие физические характеристики (например, коэффициент поверхностного натяжения жидкости или плотность сухого насыщенного пара).  [c.309]

Для получения чисел подобия на основе анализа размерностей используют различные методы. Наиболее простой и удобный из них — метод Рэлея. В соответствии с этим методом искомая величина выражается через влияющие на нее параметры с помощью степенного комплекса, включающего безразмерный коэффициент и все используемые в анализе параметры в различных степенях. Например, при выявлении чисел подобия, которые надо использовать при обобщении опытных данных, полученных при исследовании теплоотдачи в трубе при вынужденном течении, искомая величина — коэффициент теплоотдачи а. Качественный анализ этого явления показывает, что если не учитывать влияния массовых сил и других усложняющих факторов на процесс теплообмена, то интенсивность теплоотдачи должна определяться линейным размером системы /о, скоростью жидкости Wo, плотностью р, удельной тепло-  [c.19]


Экспериментальное исследование процесса конвективного теплообмена. Этот путь используется чаще других, в особенности для сложных процессов. Проведение эксперимента на реальных объектах связано с трудностями организационного и экономического порядка. Кроме того, в период проведения исследования реального объекта может не быть вообще, поскольку именно потребность спроектировать его и вызвала необходимость проведения исследования. Поэтому в большинстве случаев эксперимент проводится на лабораторных установках. В процессе эксперимента выявляется влияние отдельных величин на интенсивность теплоотдачи, при этом измеряются температура, скорость, массовый расход, давление и т. п. в экспериментах по теплообмену теплофизические свойства жидкости, как правило, не измеряют, а используют опубликованные справочные данные. Экспериментальный путь решения задач конвективного теплообмена связан, с одной стороны, со сложностью, обусловленной большим количеством влияющих на теплообмен факторов [см. зависимость (14.12)], а с другой, — с узко специальным характером получаемых результатов, справедливых только для данной лабораторной установки в пределах изменения параметров эксперимента. При этом следует иметь в виду, что создание лабораторной установки, выбор моделирующей среды, определение необходимых интервалов изменения параметров эксперимента должны осуществляться в соответствии с определенными правилами, обеспечивающими достижение главной цели, — получить расчетную зависимость для процесса на реальном объекте. Три указанных проблемы — упрощение функциональной зависимости для теплоотдачи, повышение ее универсальности, создание правил моделирования — помогает решить теория подобия.  [c.328]

Классификация задач конвективного теплообмена отражает преобладающее влияние перечисленных факторов. Для некоторых частных случаев эти задачи при упрощающих предпосылках могут быть решены аналитически методами теории пограничного слоя. В общем случае для этой цели используется экспериментальный путь определения а с применением теории подобия.  [c.119]

Внутренние характеристики процесса кипения, а также интенсивность теплообмена при кипении зависят от теплофизических свойств теплоотдающей поверхности. Влияние этого фактора на скорость роста паровых пузырей и на интенсивность теплообмена наиболее полно рассмотрено в работе 32].  [c.174]

Влияние некоторых факторов на интенсивность теплообмена при пузырьковом кипении  [c.189]

Отмеченные особенности в характере распределения t j и а по длине трубы парогенератора отражают всю сложность взаимного влияния отдельных факторов на процесс теплообмена при поверхностном кипении. Действительно, при понижении давления усиливается относительное влияние конвекции в однофазной среде и ослабляется влияние механизма переноса теплоты непосредственно В форме теплоты испарения. Поэтому при низких давлениях влияние скорости на интенсивность теплообмена оказывается более значительным. В этих условиях вследствие роста истинной скорости жидкой фазы, обусловленного повышением паросодержания потока, интенсивность теплоотдачи по длине трубы возрастает, что сопровождается понижением температуры стенки. При понижении температуры стенки уменьшается число активных зародышей паровой фазы и это приводит к ослаблению влияния механизма переноса, обусловленного про цессом парообразования. В то же время вследствие прогрева основной массы жидкости по ходу потока увеличивается толщина пристенного двухфазного слоя и, следовательно, улучшаются условия для роста паровых пузырей. По-видимому, при переходе от области конвективного теплообмена в  [c.264]

Следует отметить, что систематические исследования кризиса теплообмена первого рода в наклонных трубах до настоящего времени не проводились, однако некоторые оценки влияния этого фактора могут быть сделаны [141].  [c.295]

При расчете выпарных аппаратов, предназначенных для упаривания растворов, необходимо учитывать два дополнительных (по сравнению с чистыми жидкостями) фактора, влияние которых в некоторых случаях приводит к существенному снижению интенсивности теплообмена,— это вспенивание и накипеобразование. Теоретически обоснованных количественных оценок влияния этих факторов до сих пор нет, хотя объем опытного материала, накопленного к настоящему времени, достаточно большой.  [c.362]


Таким образом, воздействие Да на а и kpi при кипении смесей является более сложным, чем воздействие Д н- Под влиянием Д н интенсивность теплообмена всегда уменьшается, в то время как в зависимости.от знака Да воздействие этого фактора может приводить либо к уменьшению, либо к увеличению а.  [c.370]

В отличие от смесей коэффициент поверхностного натяжения растворов у межфазной поверхности всегда больше, чем в основном объеме, так как Сп>Си. Следовательно, при кипении растворов нелетучих веществ под влиянием и Да коэффициент теплоотдачи уменьшается. Конечно, основное влияние на а при кипении растворов и смесей оказывает Дг , однако при анализе процесса теплообмена при кипении смесей и растворов нужно учитывать влияние обоих факторов [184].  [c.370]

Сложность процессов конвективного теплообмена заставляет при его изучении особенно широко использовать методы экспериментального исследования. В результате эксперимента получают синтезированные сведения о процессе, влияние отдельных факторов не всегда легко выделить. Эти трудности помогает преодолевать теория подобия, рассмотренная в гл. 5. Основой теории подобия является математическая формулировка краевой задачи.  [c.137]

Коэффициент теплопередачи. При расчете теплообменных аппаратов возникают трудности с определением значения коэффициента теплопередачи k. Эти затруднения в основном определяются изменением температуры рабочих жидкостей и сложностью геометрической конфигурации поверхности теплообмена. Точно учесть влияние этих факторов очень трудно, поэтому практически определение значения коэффициента теплопередачи производится по формулам, приведенным в гл. 6. Специфические же особенности процесса теплообмена в рассчитываемых аппаратах учитываются при выборе значений коэффициентов теплоотдачи а, которые входят в формулу для коэффициента теплопередачи.  [c.235]

Для жидкостных дисперсных потоков Р р, видимо, значительно превышает 3% и близко к 20%. В любом случае все величины, входящие в расчетные зависимости (6-15) и (6-16), являются физическими характеристиками либо компонентов потока (с, Ст, р, рт, v. К, К. ..), либо всей дисперсной системы (р, Сп, об, Фь ф )> которые необходимо наперед знать или оценить. Очевидно, что полученные выражения, устанавливающие в относительной форме связь между интенсивностью теплообмена и гидродинамическим сопротивлением дисперсного потока, могут быть использованы либо для анализа влияния факторов на особенности теолопереноса, либо для прямого, несомненно приближенного, расчета теплообмена лишь при знании закономерностей для А и т/ - Сведения, позволяющие оценить симплекс коэффициентов гидродинамического сопротивления, приведены в гл. 4 и в 6-9. Они не являются достаточно обобщенными и зачастую носят частный характер.  [c.190]

Следовательно, в интервале изменения концентрации от О до l коэффициент теплоотдачи при кипении раствора должен уменьшаться, а при с1<с< снас — увеличиваться. Это качественно согласуется с опытными данными (см. рис. 13.2). В реальных условиях проведения процесса минимум на кривой a—f( ) можно наблюдать при концентрациях сСсь а также при с>сь Например, интенсивность теплообмена при > i с ростом концентрации будет увеличиваться только в том случае, если уменьшение деп-рессирующего воздействия Д н не компенсируется отрицательным влиянием фактора изменяемости свойств раствора в связи с их зависимостью от концентрации. Изменение свойств раствора мо-  [c.358]

Таким образом, при разработке интенсификаторов теплообмена для двухфазного потока необходимо исследовать влияние фактора формы и исходя из этого оптимизировать конструкции интенсифищ1рующих элементов.  [c.164]

В связи с наличием дополнительного теплообмена температура мокрого термометра психрометра не равна по величине пределу охлаждения т, и показания прибора сильно зависят от скорости движения воздуха, омывающего мокрый термолЕетр. Поэтому психрометр Августа, который хотя и используется широко в практике, не может претендовать на большую точность, если только не удается точно определить скорость движения воздуха и подобрать соответствующий коэффициент А. С возрастанием скорости движения воздуха коэффициент падает, конвективный перенос тепла и влаги снижает влияние факторов, искажающих результаты. Поэтому аспи-рационный психрометр Ассмана (рис. 102, б) дает более точные показания, так как в нем оба термометра заключены в металлические трубки, через которые воздух принудительно просасывается при помощи вмонтированного в крышке М прибора вентилятора В со скоростью 2,5—3,0 м1сек. Уменьшению дополнительного теплообмена способствует также никелирование трубок и тща"ельная их полировка. Показания мокрого термометра аспирационного психрометра значительно приближаются к значениям предела охлаждения т, и ошибки наблюдения при сравнении этих величин не превышают в нормальных условиях 1,0—1,5%.  [c.170]

Это уравнение получено в предположении, что поправка на теплообмен равна нулю, т. е. все количество теплоты, подведенной нагревателями, идет на изменение температуры калориметрических систем 1 я 2 (ур-ния (134)). Это предполол ение может показаться вполне обоснованным, так как опыты проводят в адиабатических условиях. Но во многих случаях и для адиабатических калориметров приходится вводить небольшую поправку на теплообмен ( 1 настоящей главы). В описанном двойном калориметре (см. рнс. 90) влияние этого теплообмена на результат измерения С] исключается проведением первого опыта, в котором оба сосуда содержат одинаковую массу воды. В этом опыте отношение VI очень близко к единице, но не строго равно ей вследствие некоторой неидентичности сосудов 1 и 2, небольших различий в их расположении в гнезде 3, и возможного различия в их теплообмене с оболочкой. Во втором опыте эти факторы остаются теми л е самыми, так как расположение сосудов не меняется. Поэтому теплообмен в первом и втором опытах можно считать одинаковым и его влияние на результат измерения теплоемкости полностью исключенным.  [c.350]

Подробное описание работ, посвященных теплообмену псевдоожиженного слоя крупных частиц с поверхностью, проведено потому, что в слоях (крупных частиц) под давлением основная рЪль принадлежит конвективному переносу тепла, и именно доминирующим вкладом конвективной составляющей в общий коэффициент теплообмена в первую очередь объясняются высокие значения а, превосходящие (даже) при определенных условиях максимально достижимые величины при псевдоожижении мелких частиц. Боттерилл [69] показал путем сопоставления увеличения максимальных коэффициентов теплообмена с ростом давления, по данным [83], и конвективной составляющей, рассчитанной, согласно [75], при соответствующих условиях (табл. 3.1), что влияние давления на теплообмен между слоем и поверхностью не сводится лишь к росту конвективной составляющей, а имеется дополнительный фактор, подтверждающий мнение авторов [84, 85] об улучшении качества псевдоожижения, структуры слоя [27], упаковки частиц и более свободного их движения у поверхности теплообмена [69].  [c.65]


Боттерилл и Десаи [83], с одной стороны, изучали влияние давления на теплообмен псевдоожиженного слоя с поверхностью, а с другой — использовали его как фактор, изменяющий вязкость газа с целью выявления ее роли в механизме теплопереноса. Было найдено, что данные ряды экспериментов в атмосферах гелия, неона, воздуха и углекислого газа могут быть представлены в виде зависимости величины, обратной максимальному коэффициенту теплообмена, 1/ 1пах от комплекса (l/fe)X X (ц/р)[87]. Однако двукратного увеличения максимального коэффициента теплообмена, ожидаемого, в соответствии с приведенным соотношением, при изменении давления от атмосферного до 0,8 МПа в опытах [83] с плотным движущимся слоем не произошло При увеличении рабочего давления до 1 МПа во всех исследованных системах газ — твердые частицы коэффициенты возросли всего на 15%. Это позволило сделать вывод о том, что кинематическая вязкость не является главным фактором, который определяет интенсивность переноса тепла, и оказанное ею коррелирующее воздействие было случайно. В опытах с псевдоожиженным слоем наблюдалось существенное влияние изменения давления в аппарате на величину коэффициентов теплообмена с поверхностью при использовании в качестве сжижаемого материала крупных частиц узкого фракционного состава. Например, для псевдоожиженного воздухом слоя медной  [c.69]

Сквозные дисперсные потоки имеют многочисленные технические приложения пневмотранспорт ряда материалов, движение сыпучих сред в силосах и каналах, сушка в слое и взвеси (шахтные, барабанные, пневматические и другие сушилки), камерное сжигание топлива, регенеративные и рекуперативные теплообменники с промежуточным твердым теплоносителем, гомогенные и гетерогенные атомные реакторы с жидкостными и газовыми суспензиями, химические реакторы с движущимся слоем катализатора или твердого сырья, шахтные и подобные им печи — все это далеко не полный перечень. Возникающие при этом технические проблемы изучаются давно, но разрозненно и зачастую недостаточно. Исследование различных форм существования сквозных дисперсных систем в качестве особого класса потоков, выявление режимов их движения, раскрытие механизма теплообмена и влияния на него различных факторов (в первую очередь концентрации), использование полученных данных для увеличения эффективности существующих и разрабатываемых аппаратов и процессов — все это представляется как чрезвычайно актуальная и важная для современной науки и различных отраслей техники проблема. Так, например, применение проточных дисперсных систем в теплоэнергетике позволяет разрабатывать новые экономичные неметаллические воздухоподогреватели, высокотемпературные теплообменники МГД-установок, системы интенсивного теплоотвода в атомных реакторах, высокоэффективные сушилки, методм энерго технологического использования топлива и др.  [c.4]

Влияние эффекта вращения и свободы ориентировки движущейся частицы на гидродинамику ее обтекания проявляется через динамический 1Коэффициент формы кф. Таким образом, отношение (5-9) определяет различие теплообмена движущихся частиц и неподвижных шариков не только за счет несферично с ти твердого компонента (коэффициент / ),нои за счет отличия гидродинамики при Re = idem (коэффициент кф). Для качественной оценки влияния этих факторов воспользуемся соотношениями между кф ш f (гл. 2). Тогда для ламинарной области обтекания (Re<0,05) по выражению (2-7) получим  [c.151]

Введенный в (10-30) коэффициент гравитационного движения ft = Xэф.д/ ф покрывает влияние на теплоотдачу всех отмеченных выше факторов, которые возникают в связи движением слоя. Зависимость (10-30) позволяет качественно оценить изменения в теплообмене при переходе слоя от одного режима движения к другому. С увеличением скорости Осл концентрация р практически е меняется, но поскольку можно полагать, что коэффициент h растет, то a л(Nu л) повышается. Затем при увеличении Исл до предельной величины ( 9-7) начинает сказываться эффект уменьшения плотности слоя, находящегося в предразрывном состоянии. Поэтому, в частности, темп увеличения интенсивности теплообмена может снижаться. При Усл>г пр поток переходит в новый режим неплотного падающего слоя, в котором Р уменьшается — последний множитель правой части равенства (10-30) резко снизится. В итоге, если эжекти-рующий эффект ( 8-2, 8-5) езначителен, наступит падение теплоотдачи — процесс прошел через максимум интенсивности (см. 10-7, 10-8).  [c.333]

Многообразие факторов, влияющих на процесс теплообмена в соплах, и недостаточно полное экспериментальное исследование этого процесса затрудняют построение единой методики расчета. Имеется несколько методов расчетной оценки теплоотдачи в соплах, более или менее полно отражающих специфику процессов теплообмена в этих условиях. Наиболее простой метод расчета предложен Бартцем. Он основан на теории турбулентного пограничного слоя и не учитывает влияния отрицательного градиента давления на развитие пограничного слоя. В соответствии с этим методом местный коэффициент теплоотдачи определяется уравнением  [c.389]

Теплообмен при кипении. Интенсивность теплообмена прп кипении зависит от ии огих ф акторов, влияющих на число центров парообразования /г, отрывной диаметр пузыря п частоту отрыва пузырей и. В настоящее время еще отсутствуют достаточно надежные теории, объясняющие влияние основных факторов иа эти величины. Поэтому опытные данные но теплообмену при кипе-иии обычно представляют в виде различных размерных или безразмерных завр1симостей для расчета коэфчфнииента теплоотдачи.  [c.201]

Экспериментальное исследование процессов теплоотдачи в реальных ракетных двигателях сопряжено с большими затратами сил и средств, кроме того, еще не создано надежных конструкций датчиков для измерения всех нужных параметров газа в сопле. Процессы теплоотдачи в сопле реального ракетного двигателя осложнены действием турбулентности, химических реакций,теплообмена излучением, пульсациями давления, градиентом давления, сжимаемостью, неизотермичностыо и т. п. Установить влияние всех факторов на теплообмен в соплах трудно.  [c.248]

Вероятно, нельзя получить хорошее согласование опытных данных с расчетной зависимостью, если последняя учитывает только влияние теплофизических свойств материала теплоотдающей поверхности и не учитывает ее микрогеометрию. Последний фактор, ло-видимому, оказывает решающее воздействие на интенсивность теплообмена при кипении. Опираясь на теорию зарождения и роста паровых пузырей, а также на результаты исследования характера микрогеометрпи, образующейся при разных способах обработки материалов, авторы работы [79] рекомендуют нормировать значительное число параметров, характеризующих микрогеометрию поверхности Rz — высоту неровностей профиля по десяти точкам макс — сумму из наибольшей высоты выступов шероховатости и наибольшей глубины впадины в пределах базовой длины трубы  [c.213]

Влияние некоторых д р у г ih х факторов. Исследования кризиса теплообмена в условиях естественной конвекции проводились при кипении жидкостей на тонких пластинах различных размеров, поставленных на ребро и широкую грань, на трубках, а также на поверхностях, обращенных теплоотдающей стороной вниз. Эти опыты показали, что при кипении на пластинах, поставленных на ребро, когда высота пластины составляет 3—10 мм, значения <7кр1 не отличаются от значений крь полученных на горизонтальных поверхностях, обращенных греющей стороной вверх. На проволоках и трубках диаметром менее 1,5—2,0 мм кр1 выше, а на потолочных поверхностях горизонтальных пластин ниже, чем на горизонтальных пластинах, обращенных теплоотдающей стороной вверх [87].  [c.272]


При анализе влияния к.п.с. на вид функции a=f( u) необходимо учитывать изменение. теплофизических свойств смеси в связи с их зависимостью от концентрации. При этом решающим фактором является направление изменения теплофизических свойств с ростом концентрации одного из компонентов. Влияние этого фактора может ослаблять или усиливать депрессирующее воздействие величины А/п. Если коэффициент теплоотдачи при кипении чистого ВК-компонента Бк больше коэффициента теплоотдачи к чистому НК-компоненту НК, то рост концентрации последнего будет способствовать снижению интенсивности теплообмена. Если при этом кипит азеотропная смесь, то коэффициент теплоотдачи смеси азеотропного состава ааз долл<ен быть меньше Овк. Это является следствием именно ухудшения (с точки зрения теплообмена) теплофизических свойств смеси с ростом концентрации НК-компонента, так как при кипении чистой жидкости и смеси азеотропного состава Atu = 0. Например, для смеси н-пропиловый спирт — вода авк>анк, поэтому авк>ааз, см. рис. 13.4, в). Резкое снижение а при изменении концентрации н-пропилового спирта от О до 9% ( =232 кВт/м ) объясняется налол ением влияния изменяемости теплофизических свойств смеси на депрессирующее воздействие Д/н. В данном случае оба рассматриваемых фактора действуют в одном направлении — в направлении ухудшения интенсивности теплообмена. При понижении плотности теплового потока значение А н становится меньше и соответственно уменьшается ее относительное влияние на вид зависимости <и= (с ик). По этой причине для смеси н-пропиловый спирт — вода при 9 = 58,2 кВт/м2 минимальное значение а устанавливается при большей концентрации (- ЗО /о) н-нропанола.  [c.352]

Кроме указанных факторов, на <7кр1 могут оказывать влияние пульсации двухфазного потока на предвключенном участке, неравномерность распределения теплового потока по длине и периметру трубы, способ обогрева поверхности теплообмена.  [c.326]

Величина и характер изменения локального коэффициента TenjjooTfla4n по длине трубы зависят, от целого ряда факторов, таких, как профиль температуры жидкости на входе, начальный профиль скорости и условия входа жидкости в трубу или канал, характер изменения температуры стенки по длине трубы. Часто на практике эти условия достаточно точно неизвестны, что приводит к затруднению при точном расчете локальной интенсивности теплообмена. Подробное исследование влияния различных факторов на теплоотдачу при ламинарном режиме течения содержится в [Л. 77].  [c.79]


Смотреть страницы где упоминается термин Влияние фактора теплообмена : [c.94]    [c.34]    [c.183]    [c.411]    [c.349]    [c.352]    [c.211]    [c.116]    [c.85]   
Смотреть главы в:

Тепломассообмен и трение в турбулентном пограничном слое  -> Влияние фактора теплообмена



ПОИСК



Влияние некоторых факторов на интенсивность теплообмена при пузырьковом кипении

Влияние некоторых факторов на теплообмен в каналах

Влияние температурного фактора на трение и теплообмен при турбулентном течении газа

Влияние фактора теплообмена. Сопоставление с экспериментальными данными



© 2025 Mash-xxl.info Реклама на сайте