Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства композиционных материалов с полимерной матрицей

Свойства композиционных материалов с полимерной матрицей  [c.285]

Свойства одноосно-армированных композиционных материалов с полимерной матрицей [33]  [c.369]

Композиционные материалы с полимерной матрицей обнаруживают целый ряд достоинств, среди которых следует назвать высокие удельные прочностные и упругие характеристики, стойкость к воздействию агрессивных сред, хорошие антифрикционные и фрикционные свойства наряду с высокими теплозащитными и амортизационными свойствами. Вместе с тем пластики имеют и недостатки низкую прочность и жесткость при сжатии и сдвиге, снижение прочности при повышении температуры до 100—200 °С, изменение физико-механических характеристик при старении и под воздействием климатических факторов.  [c.284]


Группа 1 (композиционные ОСМ) на первой ступени классификации подразделена по типу матрицы, так как основные свойства композиционных материалов определяются, как правило, природой матрицы. По аналогичной причине подразделение подгруппы 1.1 (материалы с полимерной матрицей) проведено по типам этого вида матриц.  [c.20]

Преимуществом боралюминия по сравнению с полимерными композиционными материалами является более высокая прочность в направлениях, отличных от направления укладки волокон. Прочность боралюминия в поперечном направлении и прочность при сдвиге может быть равна прочности алюминия или сплавов на его основе и значительно превышать прочность, достигаемую в материалах с полимерной матрицей. Типичные прочностные свойства этих материалов приведены в табл. 1.  [c.423]

При отсутствии специальных требований к материалам по теплопроводности, электропроводности, хладостойкости и другим свойствам температурные интервалы работы композиционных материалов определяют следующим образом <250°С — для материалов с полимерными матрицами >1000°С — для материалов с керамическими матрицами композиционные материалы с металлическими матрицами перекрывают эги пределы  [c.500]

Волокнистые наполнители находят более широкое применение в производстве композиционных материалов вследствие их высокой прочности и жесткости и способности предотвращать прорастание треш,ин в хрупкой полимерной матрице. В зависимости от метода получения волокна обычно имеют цилиндрическую или неправильную форму. Волокна с гладкой поверхностью образуют менее прочное механическое сцепление с матрицей. Однако волокна с гладкой поверхностью легче смачиваются, чем с шероховатой, хотя полного смачивания волокон полимерами, так чтобы вообще не было пустот на поверхности, практически достигнуть не удается. Волокна могут адсорбировать различные вещества, способные влиять на их адгезионные свойства. Следует отметить, что прочное сцепление волокон с полимерной матрицей не всегда желательно, так как оно уменьшает поглощение механической энергии при разрушении композиционного материала.  [c.371]

Композиционные материалы — это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим - упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна - стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, боридов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемыми значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т. п.  [c.170]


Создание современных инженерных сооружений, конструкций и изделий высокого качества и надежности связано с использованием высокопрочных материалов с заданными физико-механическими свойствами. К таким материалам относятся композиционные полимерные материалы, изготовленные на основе высокопрочного наполнителя в виде непрерывных нитей, тканей, рубленых волокон, шпона и т. д. и связующей матрицы.  [c.3]

В книге рассматривается широкий круг вопросов, связанных с технологией изготовления, анализом свойств и применением углепластиков. В гл. 1 дана общая характеристика углепластиков. В гл. 2 обсуждаются методы изготовления и свойства углеродных волокон, в гл. 3 - свойства полимерных матриц для получения углепластиков. Гл. 4 посвящена свойствам углепластиков, гл. 5 - методам расчета этих свойств. В гл. 6 даны примеры разнообразного применения углепластиков — от предметов быта до космических аппаратов. В гл. 7 рассматриваются композиционные материалы на основе углеродных волокон и металлических  [c.7]

Терминология. Термин волокнистые композиционные материалы означает, что для упрочнения материала используются волокна. Поэтому их называют также композиционными материалами,, армированными волокнами. Свойства различных типов армирующих волокон перечислены в табл. 1.2. Как видно из таблицы все армирующие волокна обладаю высокой прочностью диаметр волокон обычно составляет 5 100 мкм. Сами волокна не используются для изготовления конструкций, изделий и т. д. Лишь соединяя их между собой с помощью полимерной, металлической или другой матрицы, можно получать композиционные материалы и изготавливать из них листы, трубы и другие изделия. Эти материалы и представляют собой волокнистые композиционные материалы, или армированные материалы. Для получения армированных углерод-  [c.16]

Углепластики являются сравнительно новыми материалами. Поэтому в настоящее время весьма затруднительно обобщать их свойства. Это связано не с тем, что накоплено мало данных о характеристиках углепластиков, а с тем, что эти материалы в настоящее время продолжают интенсивно совершенствоваться. Кроме того, как и для композиционных материалов вообще, существует значительное многообразие сочетаний углеродных волокон и полимерных матриц и связанное с этим многообразие свойств углепластиков. В данной главе на основе японской и зарубежной информации сделана попытка обобщить наиболее характерные свойства, отражающие особенности углепластиков.  [c.132]

Перспективными направлениями в создании полимерных материалов являются фотохимические превращения, которые позволяют с минимальной энергоемкостью получать полимеры с высокими эксплуатационными характеристиками. Большое внимание в настоящее время уделяется композиционным материалам, обладающим уникальными свойствами, которые обеспечиваются физико-химическими взаимодействиями между полимерной матрицей и наполнителем. Важной областью полимерной химии являются водорастворимые полимеры, обладающие специфическими свойствами и имеющие широкие перспективы практического использования.  [c.608]

Тепло- и электропроводность металлов почти на два порядка больше, чем у полимерных материалов и поэтому в случае металлов не возникает никаких проблем в отводе тепла от локального источника (например, в корпусах подшипников, плитах разъема). На практике при расчете теплопередачи к жидкостям через металлические стенки редко возникала необходимость принимать во внимание тепловое сопротивление стенки. Несколько отличная картина наблюдается в случае композиционных материалов, теплопроводность которых определяется теплопроводностью матрицы и армирующего наполнителя, причем и матрица, и наполнитель являются худшими проводниками, чем металлы, которые они могут заменять. Естественно, что с увеличением масштабов использования высокопрочных композиционных материалов появилась необходимость в получении информации об их теплофизических и электрических свойствах.  [c.285]

Поскольку полимерная матрица обладает очень низкой электропроводностью, электропроводность композиционных материалов, свойства которых приведены на рис. 7.13, можно рассчитать с помощью простого правила смеси  [c.312]

С повышением температуры прочностные и упругие свойства полимерных матриц и адгезия их к волокну постепенно снижаются вплоть до температуры стеклования, в результате чего понижается несущая способность композиционных материалов, особенно при сжатии и сдвиге, увеличиваются ползучесть и нелинейность диаграмм напряжения. Для изделий, длительно работающих при температуре выше 200 С, эпоксидные связующие заменяют более термостойкими, в основном полиимидными.  [c.586]


Многокомпонентные композиционные комбинированные покрытия (ККП) совмещают в себе свойства металлов и неметаллов. В композиционных материалах преобладают свойства, которые присущи материалу основы (матрицы). Внедрение частиц в матрицу позволяет получать более плотное структурное и менее напряженное без сетки трещин и пор покрытие, которое обычно обладает повышенной защитной способностью и поэтому предпочтительнее в эксплуатации. ККП могут быть на металлической основе с включением частиц твердых керамических материалов, повышающих твердость и износостойкость, или мягких полимерных материалов (например, дисульфида молибдена, графита) для придания изделиям антифрикционных свойств. ККП бывают также на неметаллической (полимерной) основе с включением твердых металлических и неметаллических частиц (например, для придания лакокрасочному покрытию специфических свойств и сохранения при этом защитной способности покрытия).  [c.695]

Создать общую теорию конструирования композитов весьма сложно, она находится в стадии накопления данных экспериментирования. Наиболее обоснованы методы прогнозирования свойств композитов на металлической матрице, получаемых методом порошковой металлургии, стекловолокнитов и дисперсно-наполненных полимерных материалов для простых схем армирования и изученных матриц. При создании композиционных материалов расчет различных моделей осуществляется с использованием вычислительной техники.  [c.355]

Как уже отмечалось, создание композиционных материалов происходит в процессе формования изделия. Если совмещение волокнистого наполнителя и матрицы (полимерного связующего) происходит в процессе формования изделия, говорят о мокром способе формования. Если же для формования изделия используются предварительно пропитанные связующим волокнистые наполнители — так называемые препреги , то речь идет о сухом способе формования. При изготовлении препрегов растворы полимерных связующих наносят в заданном количестве на поверхность армирующих волокон с последующей их сушкой для удаления растворителя. Такие полуфабрикаты сохраняют свои технологические свойства, т. е. пригодны для переработки в изделия, в течение 10—15 дней.  [c.235]

В настоящей книге предпринята попытка изложить, минимум сведений, необходимых для выполнения всех основных этапов прочностного расчета оболочечных конструкций из композиционного материала. В двух первых главах приведены зависимости для описания упругих свойств анизотропных тел и упругих характеристик однонаправленных и многослойных композиционных материалов. Кроме того, с помощью одной из наиболее простых структурнофеноменологических моделей дано наглядное представление о специфике деформирования волокнистого композиционного материала с полимерной матрицей. Основное внимание в книге уделено изложению вариационно-матричного метода расчета сложных оболочечных конструкций применительно к многослойным конструкциям из композиционных материалов. В приложениях даны некоторые специальные подпрограммы для ЭВМ.  [c.5]

Углепластики являются в настоящее время серьезным конкурентом углеметаллических композиционных материалов. Так как плотность полимерной матрицы составляет всего 1,5 г/см , т. о. примерно в 2 раза меньше, чем у такого легкого металла, как алюминий, удельные механические характеристики углепластиков при комнатной температуре заметно выше, чем у углеметаллических композиций. Однако температурная стабильность механических свойств и высокая жаропрочность композиционных материалов с металлической матрицей обусловливает их преимущество при использовании в конструкциях, работающих при повышенных температурах.  [c.340]

В этой главе рассмотрена только линейно-упругая модель материала. Такая модель является первым приближением и может быть приемлемой или неприемлемой для данного композиционного материала. Например, как при быстром, так и при длительном нагружении материалов с полимерным связующим необходимо учитывать их упруговязкие свойства. Но для того, чтобы описать до разрушения деформирование композиционных материалов с пластичной металлической матрицей, необходимо учитывать пластические свойства. К сожалению, из-за сложности описания этих эффектов они зшитываются только в отдельных и немногочисленных теориях пластин. В последнее время для анализа сложных конструкций используют метод конечных элементов. Поскольку такой подход описан в гл. 7 т. 8, здесь он не обсуждается.  [c.157]

Как уже отмечалось, арамидные волокна — один из перспективных видов волокон для армирования композиционных материалов. В настоящее время интенсивно разрабатываются новые типы арамидных волокон с улучшенными свойствами. Например, фирмой Du Pont разработаны арамидные волокна марки FIBER D с модулем упругости, в 1,3 раза большим, чем у волокон KEVLAR-49 [3]. Для улучшения свойств арамидных волокон часто используют обработку их поверхности. Повышение адгезионного взаимодействия в системе армирующие волокна — полимерная матрица существенно улучшает статические и динамические свойства композиционных материалов.По современным данным, имеется значительный резерв для повышения адгезионного взаимодействия арамидных волокон с полимерной матрицей. Для поверхностной обработки волокон используют различные аппреты [4], плазменную обработку поверхности [5], ионное травление [6] и другие методы.  [c.267]

В любом композиционном материале должны быть по крайней мере две различные фазы, разделенные межфазной границей или областью (слоем). Хотя влияние границы раздела на свойства композиционных материалов может быть значительным, его не следует переоценивать. Однако недооценивать его также не следует. Причина, по которой чрезвычайно трудно значительно улуч-щать одновременно такие свойства композиционных материалов как жесткость, механическая прочность и стойкость к росту трещин, кроется, по крайней мере частично, в особенностях и свойствах граничных областей. Так, в простейшем случае, облегчая отслаивание полимерного связующего от стеклянного волокна в полиэфирных стеклотекстолитах, можно добиться повышения стойкости к росту трещин, но при этом прочность понизится, и наоборот, повышая прочность сцепления полимер — наполнитель, можно добиться повышения прочности, но за счет снижения энергии роста трещин. Повысить энергию роста трещин наряду с другими способадми можно классической остановкой трещины (рис. 1.8), тогда как прочность можно повысить путем равномерной передачи усилий с матрицы на волокна, возможной только при прочной адгезионной связи между фазами [25]. При этом следует пом-  [c.41]


Порошковые наполнители полимеров используют в промышленных масштабах главным образом для снижения стоимости и улучшения технологических свойств материалов. За исключением отдел -.ных случаев такие наполнители практически не влияют на механические свойства композиций. Применяемые в промышленности наполнители состоят из частиц различной формы с большим разбросом по размерам — от искусственных стеклянных микросфер до окаменелых моллюсков (мела). Прочность и вязкость разрушения полимерных композиционных материалов с порошковыми наполинтслями зависят от формы и размеров частиц наполнителя, их содержания, прочности сцепления с полимерной матрицей, вязкости разрушения матрицы и (в отдельных случаях) частиц наполнителя. При анализе этих свойств необходимо разделить полимерные композиционные материалы с дисперсными наполнителями на хрупкие (на основе стеклообразных полимеров типа отвержденных эпоксидных и полиэфирных смол) и нехрупкие (на основе частично кристаллических полимеров с высо-  [c.69]

Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использо-Bainie такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось ие вполне точным. Само понятие композиционный уже указывает на присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря на несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например иесмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ухудшению механических свойств композиционных материалов, оказывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность.  [c.287]

Нарядз с полимерными матрицами в композиционных материалах можно широко варьировать наполнители, причем в одном материале можно использовать два или более наполнителей, каждый из которых образует отдельную фазу. Неограниченная вариабельность состава композиционных материалов создает большие трудности при описании и обобщении их свойств. Свойства композиционных материалов определяются не только свойствами и соотношением компонентов, но и в значительной степени характером распределения частиц наполнителей, их формой и размерами. Очевидно, что свойства стеклопластиков в решаюш,ей степени зависят от того, использованы ли при их производстве ориентированные волокна или тонкодисперсные порошки. В связи с этим возникает необходимость классификации и описания важнейших типов наполнителей, используемых в производстве композиционных материалов на основе полимерной матрицы. Выбор наполнителя зависит главным образом от тех свойств, которые он должен придать материалу с учетом стоимости и его совместимости с полимерной матрицей.  [c.369]

Предлагаемая советским специалистам книга Углеродные волокна , изданная в 1984 г. в Японии под редакцией проф. С. Симамуры, представляет собой коллективную монографию, подготовленную четырнадцатью ведущими японскими специалистами, и охватывает самые различные аспекты сравнительно молодой, но весьма перспективной области современного материаловедения. В книге рассматриваются вопросы получения углеродных волокон и армированных ими композиционных материалов, структура и свойства волокон и полимерных связующих для углепластиков, характеристики композиций на основе полимерных и металлических матриц, технология изготовления из низ элементов конструкций, а также применение этих материалов в самых разнообразных изделиях - от спортивного снаряжения до космических аппаратов.  [c.5]

Общая характеристика и классификация композиционных материалов. Композиционными называют сложные материалы, в состав которых входят отличающиеся по свойствам нерастворимые друг в друге компоненты. Основой композиционных материалов является сравнительно пластичный материал, называемый матрицей. В матрице равномерно распределены более твердые и прочные ве1цества, называемые ирочнмшеляд/w или наполнителями. Матрица может быть металлической, полимерной, углеродной, керамической. По форме упрочнителя композиционные материалы делятся на дисперсно-упрочненные (с нуль-мерными упрочнителями), волокнистые (с одномерными упрочните-лями), слоистые (с двумерными упрочнителями).  [c.260]

Кремнийорганические смолы в промышленности получают гидролизом смесей хлорсиланов. В основную цепь макромолекулы входят силоксановые связи. Это довольно дорогие смолы, однако по ряду свойств в отвержденном состоянии, таких как кратковременная устойчивость при температуре в интервале 250—500°С и высокие показатели электроизоляционных свойств стеклотексто-литов на их основе они превосходят материалы на основе феноло-и меламиноформальдегидных смол (см. [5] дополнительного списка литературы). Пресс-порошки на основе кремнийорганических смол, стеклянных или асбестовых волокон и соответствующих катализаторов производят в промышленности в небольших количествах и они дороже даже фторопластов. Долго не могли найти доступной полимерной матрицы, длительно работающей в температурном интервале 150—250 °С (промежуточной между эпоксидными полимерами и полиимидами), которая сочетала бы различные свойства при умеренной стоимости. До некоторой степени ряд полимеров, полученных реакцией Фриделя — Крафтса и имеющих структуру, промежуточную между полифениленами и фенольными смолами, удовлетворяют этим требованиям и начинают широко использоваться в производстве композиционных материалов.  [c.25]

Термопластичные полимеры в стеклообразном состоянии характеризуются низкой сопротивляемостью прорастанию трещин при ударном нагружении. Этот существенный недостаток можно устранить пластифицированием низкомолекулярными веществами или смешением с полимерами повышенной упругости. Однако в обоих случаях повышение ударопрочности сопровождается снижением жесткости, предела пропорциональности и теплостойкости материала. Удачной попыткой избежать этих осложнений явилось создание эласхифицированных и наполненных термопластов. В первом случае повышенная ударопрочность достигается диспергированием эластомера в непрерывной матрице из термопласта, во втором — наполнением волокнами различного типа. Эффект эластифицирования обеспечивается лишь в том случае, когда на границе контакта термопласт — эластомер создан переходный слой определенной толщины, обеспечивающий устойчивость текстуры композиционного материала и прорастание трещин в частицы эластомера. Хотя пока удалось создать небольшое число эластифицированных термопластов, значение этих материалов и перспективность такого направления в полимерном материаловедении исключительно велики. Анализу свойств этих материалов и их взаимосвязи с составом посвящена IV глава.  [c.5]


Однако кол-во С. непрерывно увеличивается, гл. обр. за счёт поиска новых материалов среди соединений, близких по составу и структуре к известным С. Появляются и новые классы С. обнаружено дипольное упорядочение, близкое к сегнетоэлектрическому, в нек-рых типах смектических жидких кристаллов и полимерах создаются композицион/ше материалы, свойства к-рых можно направленно изменять, варьируя состав сегнетоэлек-трич. наполнителя и полимерной или стеклянной матрицы, а также характера связности.  [c.481]


Смотреть страницы где упоминается термин Свойства композиционных материалов с полимерной матрицей : [c.264]    [c.129]    [c.185]    [c.265]    [c.37]    [c.68]    [c.101]    [c.12]   
Смотреть главы в:

Материаловедение и технология металлов  -> Свойства композиционных материалов с полимерной матрицей

Машиностроительные материалы Основы металловедения и термической обработки  -> Свойства композиционных материалов с полимерной матрицей



ПОИСК



Композиционные материалы

Полимерные материалы

Полимерные материалы — Свойств

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте