Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор параметров тепловой схемы

ВЫБОР ПАРАМЕТРОВ ТЕПЛОВОЙ СХЕМЫ  [c.349]

При выборе оптимальных параметров тепловой схемы и других характеристик АЭС в целом одним из критериев качества является стоимость установленного киловатта [5.11]. Этот же критерий можно принять и для оптимизации внутренних параметров таких крупных единиц оборудования АЭС, как, например, комплекс конденсатор — система водоснабжения. В этом случае мощность, необходимая на охлаждение конденсатора, уже не является ограничением при поиске оптимальных параметров, но она должна входить в минимизируемый критерий качества. Последний можно представить в следующей форме  [c.188]


Вопрос о выборе тепловой схемы и оборудования будет решаться в каждом конкретном случае в зависимости от единичной мощности установки и параметров теплоносителя. Приведенные выше примеры показывают, что в распоряжении конструкторов имеются широкие возможности выбора принципиальных тепловых схем — от чисто паротурбинных установок до весьма сложных комбинированных установок, включающих МГД-генераторы, турбины на парах металлов и высокотемпературные газопаровые установки с замкнутыми гелиевыми ГТУ. Достоинство комбинированных установок — их высокая термодинамическая эффективность. Однако их применение связано с весьма сложными задачами создания газовых турбин большой мощности и компрессоров к ним.  [c.260]

По своему месту в комплексном исследовании больших развивающихся систем в энергетике данные задачи примыкают, с одной стороны, к исследованиям электроэнергетических систем (к задачам оптимизации их структуры и управления развитием в целом), детализируя и уточняя соответствующие решения по развитию ТЭС с другой — к задачам выбора оптимальных циклов и параметров теплоэнергетических установок, играя здесь роль информационного звена и конкретизируя объективные предпосылки оптимизации (путем выбора вида тепловой схемы ТЭУ, основных энергоэкономических характеристик и условий ее функционирования в энергосистеме).  [c.196]

В настоящее время удовлетворение потребности в тепловой и электрической энергии осуществляется путем соответствующего подбора на электростанциях конденсационных и теплофикационных турбин. При комбинировании газотурбинного и паросилового циклов имеется возможность путем надлежащего выбора параметров и схемы одной комбинированной парогазовой установки вырабатывать электрическую и тепловую энергию в любых соотношениях, необходимых потребителю. Это достигается с помощью теплофикационных парогазовых установок с различными типами паровых и газовых турбин.  [c.217]

В соответствии со СНиП 11-35-76 проектирование новых и расширение действующих котельных должно осуществляться в соответствии с утвержденными схемами теплоснабжения, т. е. с учетом количества и режимов потребления теплоты промышленными предприятиями и жилищно-коммунальным сектором (ЖКС). Число и единичная мощность котлоагрегатов, параметры и вид теплоносителя (пар или перегретая вода) зависят от суммарных тепловых нагрузок котельной и режима отпуска теплоты, определяемого режимом работы потребителей. В связи с этим проектировщикам на основании заявок потребителей приходится составлять исходные данные тепловых нагрузок котельной установки. От тщательности этой работы зависят последующие проектные решения выбор принципиальной тепловой схемы, основного и вспомогательного оборудования, а также технико-экономические показатели котельной.  [c.146]


Паротурбинный привод. При наличии собственной ТЭЦ целесообразно применять паротурбинный привод турбокомпрессоров. Выбор типа турбин и рабочих параметров пара определяется тепловой схемой завода. На основе общезаводского баланса пара разных параметров выбирают параметры отборов или противодавления турбин для привода компрессоров.  [c.482]

Тип и параметры принципиальной тепловой схемы, характеризующей тепловой цикл работы электростанции, непосредственно определяют ее тепловую экономичность и в значительной степени надежность работы. Поэтому разработка принципиальной тепловой схемы новой установки является весьма ответственной задачей и требует решения ряда существенных вопросов. Разработка принципиальной тепловой схемы заключается в выборе типа и мощности энергетической установки (электростанции) и отдельных ее элементов в составлении схемы, т. е. в объединении отдельных ее элементов в единую установку, обеспечивающую надежный заданный отпуск энергии и экономично работающую в расчетах, служащих для определения потоков пара и воды и показателей тепловой экономичности.  [c.182]

Полную тепловую схему вновь проектируемой электростанции составляют на основе расчета принципиальной тепловой схемы и выбора основного II вспомогательного теплового оборудования электростанции. При выборе оборудования определяют количество аппаратов и их основные технические характеристики производительность и параметры.  [c.242]

Выбор типа, параметров и единичной мощности турбогенераторов производится при разработке принципиальной тепловой схемы электростанции. Вопрос о резервной электрической мощности турбогенераторов связан непосредственно с разработкой полной тепловой схемы электростанции.  [c.244]

Выбор типа и параметров котлов производится при разработке принципиальной тепловой схемы  [c.246]

Применение дорогих марок высококачественных сталей при сверхвысоких параметрах пара требует всемерной экономии металла при конструировании турбин, котлов и прочего оборудования, а также выборе резервного оборудования и систем трубопроводов электростанций с этими параметрами. Трубопроводы питательные и свежего пара выполняются при этом по схемам секционной с переключательной магистралью или блочной без таковых. На фиг. 3356 (см. вклейку в конце книги) показан возможный пример тепловой схемы электростанции с сверхвысокими пара-  [c.527]

При выборе схемы, параметров и конструкции газотурбинного агрегата для ГТУ учитываются оптимальный к. п. д. установки на номинальном и переменном режимах, возможный предел начальной температуры газа, вид топлива, назначение установки, требования компоновки основного и вспомогательного оборудования. Паровая турбина для ПГУ обычно выбирается из числа типовых (стандартных), а ГТУ выбирается на основе анализа тепловой схемы ПГУ, включающего рассмотрение подходящих по расходу и давлению воздуха типовых газовых турбин или новых газовых турбин с оптимальными для данной схемы ПГУ характеристиками. Выбор типовой или подлежащей проектированию новой ГТУ производится путем сопоставления техникоэкономических показателей всей ПГУ.  [c.101]

Вопрос о выборе разделительного давления между ЦСД и ЦНД, как указывалось, чрезвычайно сложен из-за обилия факторов, влияющих на экономические показатели в зависимости от этого параметра (см. п. III.4 и III.6). В новых проектах при выборе разделительного давления приходится подчиняться также требованиям к унификации ЦНД обычных и атомных турбин. В последних же это давление определяется с учетом также общей тепловой схемы и влажности пара за ЦВД (см. гл. VII).  [c.45]

Косвенно эти напряжения учитывают при выборе допустимых значений температур и скоростей их изменения. Однако в зависимости от начального теплового состояния турбины и соответственно от начальных термических напряжений предельно допустимыми будут разные скорости прогрева деталей. На допустимые скорости нагружения могут оказывать влияние также те или иные изменения в тепловой схеме, системе обогрева и пр., вследствие чего возможно изменение параметров пара и обусловленных этим напряжений.  [c.174]


Задача 1. Алгоритм оптимизации непрерывно изменяющихся параметров реализуется применительно к задаче оптимизации термодинамических, расходных и конструктивных параметров тепловой электростанции с паротурбинными блоками мощностью 800 тыс. кет, имеющими весьма сложные схемы технических связей между отдельными узлами и элементами оборудования. Математическая модель такой установки вместе с табличными данными термодинамических свойств рабочих веществ занимает более 10 тысяч ячеек внутренней и внешней памяти ЭЦВМ. Время счета задачи при совместной оптимизации 20 термодинамических параметров находится в интервале 2—3 час машинного времени для случайно взятого исходного варианта и 0,3—1,0 час при обоснованно выбранном исходном варианте. Такой выбор всегда возмон<ен на основании инженерного опыта.  [c.34]

Комплексная оптимизация теплоэнергетических установок имеет целью выбор термодинамических и расходных параметров рабочих процессов установки, конструктивно-компоновочных параметров и характеристик элементов оборудования, а также вида тепловой схемы, которым соответствует минимум расчетных затрат по установке. Разработанные к настоящему времени методы математического моделирования и комплексной оптимизации теплоэнергетических установок применимы для достаточно эффективного выбора термодинамических, расходных и конструктивно-компоновочных параметров установки с фиксированной или изменяемой в узком диапазоне тепловой схемой. Решение более общей задачи, включающей оптимизацию вида тепловой схемы установки, встречает серьезные трудности в создании эффективного метода расчета тепловых схем установок и в разработке метода оптимизации вида схемы.  [c.55]

Многообразие известных в настоящее время типов реакторов и АЭС, значительно отличающихся топливным циклом, теплоносителями, требованиями к рабочим веществам, оборудованием, затрудняет выбор одного или нескольких наиболее перспективных типов АЭС для дальнейшего развития атомной энергетики. Для обоснованного выбора необходимы оптимизация параметров и показателей каждого из возможных типов АЭС, определение рациональных тепловых схем, перспективных типов оборудования и его оптимальных конструктивных характеристик.  [c.77]

При использовании математического моделирования для технико-экономической оптимизации параметров теплоэнергетических установок возникают трудности, связанные с зависимостью конструктивных и технологических решений по основным элементам тепловой схемы от мощности установки. В то же время решающее влияние на выбор единичной мощности блока оказывают системные условия и уровень развития энергомашиностроения. Поэтому при математическом моделировании теплосиловой части АЭС для оптимизации ее параметров целесообразно ограничиться рассмотрением блоков постоянной или меняющейся в небольших пределах мощности.  [c.77]

Принципиально в качестве определяющих параметров для каждого типа структурных решений по тепловой схеме может быть принят любой из нескольких возможных наборов параметров. С практической точки зрения выбор совокупности определяющих параметров имеет существенное значение, так как им обусловливается количество итераций при расчете тепловой схемы с заданной точностью и, следовательно, длительность расчета схемы на ЭЦВМ, а также пригодность модели для проведения исследований. Поэтому необходим предварительный анализ достоинств и недостатков возможных вариантов сочетаний определяющих параметров.  [c.82]

Одновременно с оптимизацией указанных параметров осуществлялась оптимизация остальных термодинамических и расходных параметров АЭС, связанных с независимыми системой балансовых уравнений. Выбор этих И параметров, а не каких-либо других, в качестве независимых оптимизируемых объясняется только соответствующим построением программы расчета тепловой схемы, позволившим уменьшить число итерационно вычисляемых величин, упростить логику программы и считать различные варианты схемы по одной программе, изменяя исходные данные.  [c.104]

Состав характеристик (параметров) каждой группы и основные взаимосвязи между ними схематически показаны на рис. 9.1. Как видно из этого рисунка, выбор оптимальных внутренних параметров ТЭУ тесно связан с системными параметрами ТЭС и системными факторами через обобщенные характеристики ТЭУ. Схема представляет по существу принципиальную информационную модель рассматриваемой задачи. Такая модель позволяет выявить состав исходной и искомой информации и проследить их взаимосвязи. Так, например, термодинамические параметры ТЭУ и структура ее тепловой схемы определяют уровень тепловой экономичности и маневренные свойства установки, что в свою очередь обусловливает выбор режима ее работы и эксплуатационные издержки. В то же время режим использования каждой установки связан с режимами работы других электростанций и экономичностью эксплуатации ЭЭС в целом. Аналогично устанавливается цепочка взаимосвязей в обратном направлении от режима электропотребления и структуры ЭЭС к оптимальному режиму использования отдельных ТЭУ и далее к выбору рационального уровня тепловой экономичности и внутренних параметров установки. С помощью информационной модели можно сформировать и множество других цепочек и ветвлений информации.  [c.195]

Вместе с тем рост мощности тепловых электростанций связан с увеличивающимся потреблением топлива, и вопросы повышения экономичности теплоэнергетического оборудования приобретают исключительное значение. В первую очередь это может быть достигнуто повышением начальных параметров пара, совершенствованием тепловой схемы, а также выбором оптимального вакуума.  [c.14]

Выбор параметров среды в опорных точках и распределение приращения энтальпий рабочего тела по отдельным элементам поверхностей нагрева и их последовательное размещение по ходу потока дымовых газов составляют содержание тепловой схемы парогенератора.  [c.431]


Общие положения. В зависимости от цели расчета тепловой схемы возникает необходимость рассмотрения и анализа определенного числа вариантов. Цели могут быть весьма разнообразны выбор вида и параметров схемы, анализ изменений в ее структуре, анализ режимов работы турбоустановки, оптимизация элементов тепловой схемы и др.  [c.174]

Рассмотрены принципиальные схемы и параметры промышленных ТЭС. Освещены вопросы комбинированной выработки теплоты и электроэнергии п совместной работы заводской ТЭЦ с энергосистемой. Дана методика расчета тепловых схем и выбора оборудования промышлен пых ТЭС. Описаны особенности режимов работы заводских ТЭС, связанные с использованием внутренних энергоресурсов предприятия.  [c.2]

К задачам иерархических уровней II—IV относятся такие, например, как распределение различных видов топлив между отдельными потребителями выбор состава и профиля основного энергетического оборудования оптимизация параметров и вида тепловой схемы ТЭС ПП и др. Эти задачи решаются специалистами в области промышленных теплоэнергетических систем.  [c.239]

В наиболее общей постановке задача статического моделирования предполагает оптимизацию не только параметров, но и вида тепловой схемы ТЭС ПП с выбором состава теплоэнергетического оборудования и наивыгоднейшей схемы его соединения. Проблема решения задачи математического моделирования в данной постановке состоит в совместной оптимизации непрерывно изменяющихся (например, расходов, температур, давлений и т. п.) и дискретных (количества котлов-утилизаторов, чисел и типов турбин, компрессоров и другого энергетического оборудования) параметров.  [c.242]

При выборе графика контроля питательной воды учитываются тип котла, параметры, мощность и тепловые схемы (блочная,секционированная).  [c.139]

Как энергетический аппарат ядерный реактор является лишь генератором тепловой энергии определенных параметров, получаемой за счет деления ядер атомов урана и плутония. Эффективность преобразования этой тепловой энергии на АЭС в электрическую определяется выбором параметров, совершенством теплогидравлической и электрической схем АЭС, техническим совершенством и надежностью ее оборудования, средств управления и контроля и пр.  [c.133]

В 3-м издании по-новому изложены характеристики теплофикационной установки как одной из подсистем технологической схемы ПТУ, а также описан выбор параметров, необходимых при проектировании тепловой (технологической) схемы. Как и ранее, значительное внимание уделено теплообменному оборудованию ПТУ, включая промежуточные сепараторы-пароперегреватели АЭС.  [c.8]

Термодинамический анализ дает возможность получить оптимальные соотношения между параметрами тепловой схемы, обеспечиваюшими минимальные расходы вводимой в установку превратимой энергии. Однако на выбор оптимальных параметров тепловой схемы реальных установок влияют как термодинамические факторы, так и экономические стоимость металла, из которого выполнено оборудование стоимость сооружения зданий, эксплуатации установки и т. д. Можно привести многочисленные примеры, подтверждающие это положение. Известно, например, что понижение температурных напоров в теплообменниках всегда приводит к уменьшению эксергетических потерь, вызванных необратимостью теплообмена, но увеличивает поверхности теплообмена, их веса, а значит, и стоимость. Поэтому выбор оптимальных температурных напоров в реальных установках должен осуществляться путем увязки термодинамического анализа с технико-экономическим анализом, чтобы учесть как термодинамические, так и стоимостные показатели. В будущем, вероятно, будет создан единый комплексный метод, который, возможно будет назван тер-модинамико-экономическим методом и позволит осуществить комплексную оптимизацию параметров энергетических установок. Оперируя одновременно условиями максимального приближения рабочего процесса установ-336  [c.336]

Выбор оптимальных технологических схем установок подготовки и перераз-работки природного и нефтяного газа и газового конденсата требует создания обобщенной математической модели процесса разделения, адекватно отражающей процесс в широком диапазоне изменения параметров. Основанная на концепции теоретической ступени контакта термодинамическая модель процесса разделения сводится к решению системы нелинейных алгебраических уравнений, отражающей материальный и тепловой баланс на ступенях контакта и фазовое распределение компонентов неидеальных углеводородных систем. Общая система уравнений предложенной модели имеет следующий вид  [c.267]

Выполненные в последнее десятилетие широкие технико-экономические исследования и проектно-конструкторские разработки в области использования ядерной энергии для целей теплоснабжения позволили обосновать возможность создания крупных систем теплоснабжения с атомными источниками теплоты (АИТ). При этом особое внимание уделяется нахождению оптимальны х параметров АИТ, решению вопросов транспорта теплоты и выбору параметров сетевого теплоносителя (пара и горячей воды). Эти вопросы должны рептаться с учетом существенной удаленности энергоисточников от потребителей теплоты, разнообразия технологических схем отпуска теплоты и многоконтурности производства пара и горячей воды, относительно низких энергетических параметров пара, высокой концентрации тепловых нагрузок и многих других факторов. Обоснованный выбор основных направлений развития систем теплоснабжения с АИТ возможен только на основе комплексного рассмотрения всех звеньев такой системы, с учетом ее взаимосвязей с ЭК и его подсистемами, а также другими отраслями народного хозяйства.  [c.117]

Результаты, установленные в работах [419—423], указывают на необходимость учета влияния кинетики химических реакций при выборе тепловых схем и параметров цикла, при расчетах теплообменных аппаратов и проточных частей газовых турбин. Для решения этих задач требуется разработка методов расчета параметров потока N2O4 в каналах с постоянным и переменным поперечным сечением при наличии и отсутствии энергообмена и трения, а также детальное знание кинетики и механизма химических процессов, протекающих в реагирующей четырехокиси азота.  [c.7]

Второе решение (рис. 1-14) усложняет тепловую схему, так как при этом требуются дополнительные перекачивающие насосы после каждого подогревателя или после группы подогревателей (если использовать также и давление гидростатического столба при расположении подогревателей на разных отметках). Необходимо также учитывать, что схема со смешивающими подогревателями чувствительна к резко переменным нагрузкам и более применима для работы турбин с постоянной нагрузкой. Так как блоки сверхкритичеоких параметров о1бычно работают с постоянной нагрузкой, то разработка таких схем для них безусловно перспективна. Последний, третий, путь удаления окислов меди из тракта может быть осуществлен различными способами (конкретно их см. в гл. 7). Весьма важным обстоятельством при выборе какого-либо решения должна быть оценка и, в отношении вывода окислов железа.  [c.24]


По этим программам на ЛМЗ, УТМЗ, ХТГЗ, в МЭИ и других организациях выполнены расчеты, связанные с определением статических характеристик различных турбоустановок, диаграмм режимов и выборов оптимальных параметров, схем и конструкций этих энергоустановок, а также пароохладителей по схемам Виолена и Ри-кара. Эти исследования проводятся путем многовариантных расчетов, причем время расчета одного варианта тепловой схемы конденсационной турбоустановки на ЭВМ типов БЭСМ-4, М-220 составляет несколько минут.  [c.36]

К классическим проблемам в теплоэнергетике можно вполне отнести задачу определения оптимального распределения регенеративных отборов и выбора оптимальных параметров промперегрева с целью достижения максимальной тепловой экономичности турбоустановки, т. е. минимума удельного расхода тепла. Для упрощенных тепловых схем заданная задача решается аналитически. В работе В. Я. Рыжкина [Л. 35] широко используются комбинированные методы. С использованием метода Лагранжа для учета ограничений вида равенства получены системы алгебраических уравиений, удов-летворяюш,их условиям оптимальности распределения. Для численного решения этих систем применяется ЭВМ.  [c.59]

В главах V—IX мы рассматривали только тепловые процессы и расчеты элементов, - еп-ловой схемы и их взаимозависимость. Расчетная тепловая схема, подобная приведенной на фиг. 79, в гл. IX, называется обычно принципиальной и служит только для выбора элементов оборудования, определения параметров в отдельных точках и суммарных расходов пара, тепла и топлива за определенный период времени (час, год). После расчета такой схемы и выбора основных элементов оборудования для станции должна быть рааработана развернутая тепловая схема. По сравнению с принципиальной схемой в нее доЯолнительно включаются все рассмотренные выше элементы оборудования, аппаратуры, трубопроводов, баков и т. д.  [c.140]

Питательный турбонасос чаще всего применяется один с производительностью 100 /o, а в США в последнее время — также два насоса производительностью по 50%. Для блока с турбиной ВВС 1300 МВт мощность питательного насоса — 46 МВт. Применяются, но не всегда, пускорезервные электронасосы, один или два, производительностью около 20Сообщая тенденция к снижению капиталовложений отражается на выборе вакуума и тепловой схемы. Например, в новой крупной серии турбин фирмы Альстом мощностью 700 МВт для параметров пара / о=16,3 МПа, о = 813К и tn.n = = 813 К давление в конденсаторе повышено до  [c.83]

Газотурбостроенне длительное время развивалось по пути достижения высокой тепловой экономичности, которую можно было бы противопоставить экономичности паротурбинных энергоблоков. Однако до сих пор этой проблемы решить не удалось, и развитие газовых турбин применительно к большой энергетике в основном направлено на создание пиковых ГТУ. С целью совершенствования этих установок уже в недалеком будущем будут применяться высокотемпературные газовые турбины с начальной температурой 1500 К и выше. Но даже ири таких температурах ГТУ, выполненные по простым схемам, по экономичности не могут конкурировать с паротурбинными блоками. Вопрос же о целесообразности создания ГТУ с высоким к. п. д., выполненных по сложным схемам, находится, как и вопрос выбора параметров пара, в тесной связи с перспективами развития других энергетических установок, в частности комбинированных.  [c.252]

Математическая модель была использована для проведения расчетных исследований и оптимизации параметров теплосиловой части АЭС с кипящим реактором. Рассматривалась турбоустановка мощностью 500 Мет в турбину поступает сухой насыщенный пар при давлении 65 ата, расход пара принят постоянным во всех рассматриваемых вариантах и равным 2700 т/час. Температура питательной воды принята 160° С. Давление в конденсаторе турбины принято равным 0,04 ата (по результатам предварительно проведенной оптимизации низкопотенциальной части турбоуста-нсвки и системы водоснабжения для одного из районов страны). В соответствии с изложенной выше методикой первым этапом работы по оптимизации параметров теплосиловой части АЭС были термодинамические исследования возможных тепловых схем турбоустановки для выбора наиболее экономичных схем и определения степени влияния отдельных параметров.  [c.83]

В черной и цветной металлургии большинство КУ устанавливают за металлургическими печами. В черной металлургии выбор параметров пара определяется прежде всего тепловой схемой его использования, и в основном они составляют 1,8 и 4 МПа с небольшим перегревом (350-440 "С). На предприятиях цветной металлургии, содорегенерационной и сернокислотной промышленности в отходящих газах печей содержатся оксиды серы и другие коррозионно-активные вещества, давление охлаждающей среды выбирается из условий, при которых температура поверхностей нагрева КУ и ЭТА будет выше точки росы дымовых газов. Так, например, ддя отходящих газов печей с кипящим слоем при обжиге серного колчедана, цинковых концентратов температура точки росы достигает 200—220, для кислорюдно-взвешенной плавки 220 и может быть равна 250—260 °С. Исходя из этого нижний предел давления для охлаждающей воды устанавливается 4 МПа, что соответствует минимальной температуре 265 °С при насыщении. Верхний предел ограничивается условиями рационального использования пара, надежностью работы металла и технико-экономическими показателями. Например, в сернокиаютной промышленности одним из условий повышения параметров пара явилась необходимость использования теплоты в зависимости от сезона, поэтому параметры пара КУ были повышены, чтобы направить пар в паровые турбины для выработки электроэнергии.  [c.188]


Смотреть страницы где упоминается термин Выбор параметров тепловой схемы : [c.292]    [c.294]    [c.59]    [c.78]    [c.81]    [c.213]    [c.281]   
Смотреть главы в:

Тепловое и атомные электростанции изд.3  -> Выбор параметров тепловой схемы



ПОИСК



Выбор параметров

Схемы Параметры



© 2025 Mash-xxl.info Реклама на сайте