Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Олово - ванадий

В случае смачивания пленок ванадия, нанесенных на кварц и графит, оловом расплав не насыщался ванадием, так как растворимость олова в ванадии при 900° С около 9 ат.%, а насыщенный ванадием расплав олова при 900° С смачивает керамику приблизительно так же, как компактный ванадий.  [c.18]

Сплавы серии 2000 могут содержать добавки марганца, кремния, железа, никеля, лития, кадмия, олова, циркония, ванадия и титана в зависимости от специфики применения. Большинство ис-  [c.238]

Титан образует сплавы со многими элементами с алюминием, марганцем, оловом, медью, ванадием, молибденом, хромом. Сплавы титана с алюминием имеют  [c.71]


При введении в титан легирующих элементов в концентрациях, обеспечивающих примерно одинаковый предел текучести, получают различные значения характеристик пластичности. Например, при одном и том же пределе текучести сплавы титана с алюминием имеют значительно меньшее удлинение и поперечное сужение по сравнению со сплавами, легированными цирконием, оловом и ванадием. Низкая пластичность сплавов титана с алюминием объясняется сильной сегрегацией алюминия на границах зерен, что не характерно для сплавов титана с оловом, цирконием и ванадием. Так, в частности, при среднем содержании 3,42% AI его концентрация внутри зерна составляет 3,22%, а вблизи границ 10,6% (по массе) [44]. Неоднородное распределение алюминия по объему зерна приводит к появлению аа-фазы, вызывающей хрупкость при значительно меньших концентрациях алюминия, чем это следует з диаграммы состояния титан — алюминий. Для устранения указанного недостатка а-сплавы легируют небольшими количествами изоморфных -стабилизаторов.  [c.23]

В состав современных титановых сплавов входят легирующие элементы, обеспечивающие получение требуемой структуры и свойств, а также необходимой стабильности сплава при эксплуатации. В сплавы вводят один или несколько элементов, растворяющихся в твердом растворе и повышающих его прочность при обычных и высоких температурах. С повышением прочности сплава понижается его пластичность, особенно в тех случаях, когда вводимый легирующий элемент растворяется в титане неполностью и образует с ним химические соединения. Сильно понижают пластичность титановых сплавов железо и хром. Влияние этих элементов усиливается при их высоком содержании, когда образуются интерметаллиды. Умеренно действуют на интенсивность повышения прочности и понижения пластичности титановых сплавов олово и ванадий. ......  [c.17]

Аллотропия металлов. Аллотропия металлов (или полиморфизм) — свойство перестраивать решетку при определенных температурах в процессе нагрева и охлаждения — присуща многим металлам (железу, марганцу, никелю, олову, титану, ванадию и др.). Каждое аллотропическое превращение происходит при определенной температуре (например, одно из превращений железа происходит при температуре 911 °С, ниже которой атомы составляют ре-  [c.20]

Ванадия, молибдена, ниобия, олова, железа, хрома, марганца. Молибденом, кремнием, марганцем, ниобием, цирконием.  [c.517]


При нагреве титан поглощает кислород, азот, водород и углерод, которые образуют с Ti а и Tip твердые растворы внедрения разной предельной концентрации, в отличие от нормальных легирующих элементов (ванадия, алюминия, олова и др.), образующих твердые растворы замещения.  [c.519]

В составы титановых сплавов, кроме алюминия, дополнительно вводят молибден, ванадий, цирконий, хром, кремний, олово, ниобий и железо. Эти легирующие элементы, а также попадающие примеси изменяют температуру полиморфного превращения титана.  [c.298]

Эффект Холла. Камерлинг-Оннес и Хоф [87 J первыми пытались наблюдать э. д. с. Холла в сверхпроводящем олове и свинце. Их эксперимент не дал результатов, поскольку они просто наблюдали эффект в нормальном металле в очень сильных магнитных полях. Недавно Льюис [111] показал, что э. д. с. Холла в сверхпроводящем ванадии значительно менее ее величины в нормальном металле. Как указывает Вардан (гл. IX, п. 9), имеются убедительные теоретические обоснования того, что в сверхпроводнике не может возникнуть э. д. с. Холла.  [c.650]

И ОЛОВО, которые, видимо, не изменяют поведение титана, находясь в твердом растворе. Типичными представителями второй группы являются медь и германий, играющие роль разбавителей, т. е. в их присутствии эффективная концентрация титана уменьшается пропорционально количеству легирующего элемента а твердом растворе. Идеальный разбавитель должен уменьшать константу скорости реакции линейно от 5,2-10 см/с здо нуля при снижении до нуля концентрации титана в сплаве другими словами, удельная константа скорости реакции должна быть равна —0,052-10 (см/с /2)/ат.%. С увеличением в сплаве концентрации алюминия, молибдена или ванадия скорость реакции уменьшается значительно сильнее, чем для разбавителей. Эти элементы образуют третью группу. Из анализа данных табл. 3 следует, что ванадий эффективнее тормозит реакцию взаимодействия в разбавленных растворах, чем в концентрированных. На рис. 16 показано влияние различных типов легирующих элементов на константу скорости реакции при 1033 К. Экспериментальная кривая для сплавов титан — ванадий иллюстрирует влияние концентрации на константу скорости. Из этих результатов были рассчитаны удельные константы скорости реакции, отнесенные к весовым процентам. Они оказались равными для ванадия —0,32-10- , алюминия —0,14-10- , молибдена —0,17-Ю- (см/с 2)/вес.%.  [c.113]

Как правило, легирующие элементы снижают константу скорости образования диборида титана, поэтому соответствующим легированием матрицы можно создать специальный сплав, в котором реакция с борным волокном будет заторможена. На графике рис. 24 иллюстрируется влияние некоторых легирующих элементов на константу k при температуре 760° С. Кремний и олово не влияют на константу k медь и германий понижают ее пропорционально их содержанию в твердом растворе. Сложное влияние оказывает молибден, алюминий и ванадий. По степени эффективности снижения константы на первом месте стоит ванадий, причем, как видно,минимальное значение константы достигается в сплаве Ti—40% V.  [c.68]

Для того чтобы обеспечить высокопрочные свариваемые сплавы высокой прочностью при криогенных температурах, был разработан сплав 2021 [124]. Это сложный сплав, в котором строго контролируется содержание И легирующих элементов. Так же как в сплаве 2219, в сплаве 2021 основное упрочнение обеспечивается последовательностью превращений фазы А1—Си. Однако зарождение упрочняющей фазы во время старения при повышенных температурах стимулируется в сплаве 2021 добавками кадмия и олова [128]. Получаемая в результате прочность несколько выше, чем в сплаве 2219. Добавка марганца в сплаве 2021 дает дополнительное упрочнение и регулирует размер зерна в процессе формирования полуфабриката. Титан способствует измельчению зерна (является модификатором) и добавляется в сплав вместе с цирконием и ванадием для уменьшения трещино-образования при сварке. В сплаве 2021 ограничивается содержание магния, чтобы исключить образование нерастворимой фазы М гЗп, которая препятствует зарождению выделений [125].  [c.239]

Титановые сплавы. Существующая довольно обширная номенклатура промышленных титановых сплавов как в СССР, так и за рубежом получена путем легирования титана следующими девятью элементами алюминием, молибденом, ванадием, марганцем, хромом, оловом, железом, цирконием, ниобием, причем место каждого элемента в этом перечне соответствует его важности и масштабу применения в качестве легирующей добавки к титану. Кроме того, в некоторых сплавах встречаются кремний и бор в качестве малых добавок (десятые и сотые доли процента).  [c.181]


Сплавы с а-структурой, к которым относится технический титан и сплавы на основе системы титан — алюминий. Кроме алюминия, а-сплавы могут содержать нейтральные элементы (олово, цирконий), а также небольшие количества элементов из группы Р-стабилизаторов (молибден, ванадий и др.), при условии, что содержание последних не превосходит пределов их растворимости в а-титане.  [c.183]

Титановые сплавы. Соедииения титана с железом, марганцем, хромом, молибденом, ванадием, оловом и другими легирующими компонентами образуют титановые сплавы, обладающие повышенными прочностными свойствами и лучшей обрабатываемостью резанием по сравнению с титаном. Химиче-  [c.104]

Фиг. 63. Влияние карбидообразующих элементов на глубину отбела валков сера 2— ванадий 3— олово хром 5—молиб- Фиг. 63. <a href="/info/329241">Влияние карбидообразующих элементов</a> на глубину <a href="/info/736094">отбела валков</a> сера 2— ванадий 3— олово хром 5—молиб-
Для повышения прочности в титан добавляют хром, алюминий, ванадий, марганец, олово и молибден. Например, титановый сплав ВТ5—1, из которого изготовляют поковки, сортовой прокат и трубы, имеет Og° s 900 МПа и 800 МПа, т. е. выше, чем конструкционная углеродистая сталь. При нагреве сплава ВТ5—1 до 400 °С снижается до 500 МПа, 400 МПа. Листы из сплава ВТ5-1 могут  [c.234]

Золото, серебро, платина, олово, никель, кобальт Тантал, ниобий, титан, торий, церий, ванадий, уран  [c.369]

Для того чтобы разобраться в способах организации внутрикотловых процессов, необходимо рассмотреть, какие примеси вносятся в котел питательной водой. В первую очередь это соединения натрия, кальция и магния, кремнекисло-та и органические примеси, т. е. вещества, составляющие основу солевого состава природных вод. Эти примеси проникают в питательную воду котлов через неплотности в конденсаторах турбин, охлаждаемых природными водами, или с добавочной водой, восполняющей потери пара и конденсата в основном цикле. Затем в питательную воду попадают продукты коррозии конструкционных материалов, т. е. главным образом окислы железа, меди и цинка. Медь, цинк, а также следы олова и свинца поступают вследствие коррозии латунных трубок конденсаторов, подогревателей низкого давления (ПНД) и сетевых подогревателей (бойлеров). Принос окислов железа и незначительных количеств хрома, никеля, марганца, иногда ванадия и других легирующих добавок обусловлен коррозией основного оборудования электростанции — металла котла, пароперегревателя, трубопроводов, элементов паровой турбины. Значительное количество окислов железа доставляется конденсатами, возвращаемыми от производственных потребителей пара. Вследствие большой протяженности конденсатных магистралей этот конденсат обычно содержит много окислов железа, а иногда и другие примеси, обусловленные технологическими процессами, при которых использовался пар и получался конденсат.  [c.167]

Сера S (г). ... Сера Sj (г). . . . Сурьма Sb (т). . Селен Se (т). . . Селен Se (г). . . Селен Se2 (г). . . Кремний Si (т). . Олово Sn (т), белое Олово Sn (т), серое Стронций Sr (т) Теллур Те (т). Торий Th (т). . Титан Ti (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам W (т) Цинк Zn (т). . Цирконий Zr (т)  [c.191]

Легирующие элементы так же, как и примеси, изменяют величину характеристик упругости титана а-стабилизаторы, как правило, повышают модуль нормальной упругости, влияние р-стаби-лизирующих элементов сложнее и зависит от термической обработки. Из данных [18, 105] следует, что алюминий, подобно кислороду, азоту и углероду, повышает модуль нормальной упругости введение 6% (по массе) алюминия повышает модуль нормальной упругости титана на 8—10%. Легирование цирконием и оловом мало, но закономерно снижает модуль нормальной упругости. Ванадий, ниобий, молибден уменьшают модуль нормальной упругости отожженных титановых сплавов. Модуль нормальной упругости р-сплавов с ванадием, ниобием и молибденом находится в пределах примерно от 8 ООО до 10 ООО кгс/мм .  [c.18]

Упрочняющее влияние циркония во всех температурных областях значительно меньше, чем ванадия и тем более алюминия (рис. 41, а). Заметное упрочнение имеет место при введении 8—10% циркония, особенно в области средних температур. Примерно аналогичным образом влияет на предел текучести титана и олово (рис. 41, б). В отличие от ванадия оба указанных элемента повышают предел текучести титана не только при низких и средних температурах, но и в области высоких температур.  [c.99]

Разложение окиси азота на металлических и окисных катализаторах исследовали авторы работ 251, 268— 281]. Установлено, что эта реакция ингибируется кислородом. По данным работы [271], кислород, образующийся в реакции, оказывает более значительное влияние на скорость процесса по сравнению с кислородом, добавленным к N0 в качестве разбавителя. Это различие обусловлено тем, что при разложении N0 образуется атомарный кислород, адсорбирующийся на поверхности катализатора. Адсорбция атомарного кислорода приводит к уменьшению числа активных центров и, следовательно, к снижению активности катализатора с повышением степени разложения N0. В области низких температур катализатор по этой причине может оказаться полностью инактивированным. На это указывают, в частности, экспериментальные результаты Мюллера и Барка [268], выполнивших качественное исследование разложения окиси азота на меди, железе, цинке, серебре, свинце, алюминии, олове, висмуте, кальции, магнии, марганце, хроме, латуни, окислах олова и ванадия. Их эксперименты осуществлены в статических условиях при длительном выдерживании окиси азота в контакте с металлическими спиралями или мелкими кусками исследуемых металлов.  [c.104]


Молибдек Натрий. Никель. Свинец. Рубидий Сера. . Селен. . Кремний Олово. Титан. Ванадий Цинк. . Водород Кислород Азот. .  [c.189]

Легирование титановых сплавов оловом и ванадием ограничено в связи с дефицитностью и дороговизной этих металлов. В то же время недифицитный и дешевый марганец является эффективным упрочнителем титановых сплавов и не снижает их пластичность и технологичность. Стабильность титановых сплавов в процессе эксплуатации повышает медь. Исследования показали, что введение в титановые сплавы бора, кальция, а также циркония с бором приводит к измельчению зерна Р-фазы, а следовательно, к улучшению технологических и механических свойств сплавов.  [c.19]

Наиболее сильно задерживают процесс графитизации (оказывают отбеливающее действие) сера, ванадий, олово. Поэтому в серых литейных чугунах всегда содержится значительное количество кремния. На рис. 149 приведена нсевдобипарная диаграмма состояний Fe — С — Si стабильной (графитной) системы, отвечающая постоятшому содержанию кремния 3,0% Si.  [c.322]

Железо. Мгфгансц Ллюмипип Медь. Цинк. . Олово. Никель. Магний. Вольфрам Молибден Титаи. Сурьма. Кадмий. Ванадий Ниобий Тантал. Золото.  [c.19]

Технически чистые металлы характеризуются низкими прочностными свойствами, поэтому в машиностроении применяют главным образом их сплавы. Сплавы на основе железа называют черными, к ним относят стали и чугуны на основе алюминия, магния, титана и бериллия, имеющие малую плотность — легкими цветными на основе меди, свипца, олова и др. — тяжелыми цветными на основе цинка, кадмия, олова, свинца, висмута и других металлов — легкоплавкими цветными на основе молибдена, ниобия, циркония, воль4)рама, ванадия и других металлов — тугоплавкими цветными.  [c.5]

Другим фактором, затрудняющим перемещение дислокаций, является легирование твердых тел примесями. Известно, что малые добавки примесных атомбв улучшают качество технических сплавов. Так, добавки ванадия, циркония, церия улучшают структуру и свойства стали, рений устраняет хрупкость вольфрама и молибдена. Это, как говорят, полезные примеси, но есть примеси п вредные, которые иногда даже в незначительных количествах делают, например, металлические изделия совсем непригодными для эксплуатации. Так, очистка меди от висмута, а титана — от водорода привела к тому, что исчезла хрупкость этих металлов. Олово, цинк, тантал, вольфрам, молибден, цирконий, очищенные от примесей до 10 —10" % их общего содержания, которые до очистки были хрупкими, стали вполне пластичными. Их можно ковать на глубоком холоде, раскатывать в тонкую фольгу при комнатной температуре.  [c.135]

Аналогичные результаты для были получены Халмом [92] для тантала и Розенбергом [87] для олова, индия, таллия, тантала и ванадия. В случае ниобия картина усложнялась наличием вмороженного магнитного поля.  [c.301]

Недавно Уилкинсон и др. [221] изморили когерентное и некогерентное рассеяние нейтронов на электронах ванадия, свинца и ниобия выше и ниже Т0ЧК11 перехода. Ни в одном из этих случаев не было обнаружено изменения когерентного рассеяния или диффузного фона. Этот результат показывает, что при переходе в сверхпроводящее состояние не нронсходпт зал1етных изменении электронного распределения. Исследование рассеяния Нейтронов на ядрах в свинце и ниобии показало, что при переходе не происходит резко выраженного изменения колебаний атомной решетки ). Эти же авторы показали, что полное сечение для тепловых нейтронов у олова в нормальном и сверхпроводяш,ем состояниях одинаково в пределах 1 %.  [c.672]

Наиболее надежные экспериментальные значения А были, по-видимомз , получены при исследовании структуры промежуточного состояния пластинки, помепденноп в поле, перпендикулярное ее поверхностп. Согласно теории Ландау, которая будет рассмотрена в п. 32, ширина доменов зависит от поверхностного натяжения и размеров образца. Измерения на олове, выполненные таким способом Шавловым [78] и Льюисом, дали хорошее согласие с теоретическими значениями, приведенными в табл. 3, и с предсказанным теорией температурным ходом. Однако аналогичные измерения, выполненные на ванадии, обнаружили аномально большую величину поверхностного натяжения.  [c.739]

Титановые сплавы образуются путем легирования титана различными другими металлами, из которых наиболее важными для получения промышленных сплавов являются алюминий, хром, железо, марганец, молибден, олово, ванадий. Сравнительное упрочняющее действие некоторых и.з этих элементов на тп-тан по данным Крэгхеда, Симмонса и Иствуда приведено на фиг. 6. Из этой диаграммы видно, что наиболее сильное упрочняющее де11Ствие оказывает добавка  [c.367]

Титан в настоящее время получается методами порошковой металлургии в небольших масштабах по сравнению с методами дугового плавления (см. стр. 576—577, табл. 3 и 4). Цирконий и его сплавы с оловом, полученные методами порошковой металлургии, содержат повышенное количество кислорода и азота и не обладают той высокой коррозионной стойкостью, какую имеют сплавы, полученные дуговым плавлением. Методы порошковой металлургии применяются наряду с другими методами для производства заготовок и изделий из тория, ванадия и бериллия. Более подробные сведения о редких и тугоплавких металлах см. в гл. VIII Редкие металлы и их сплавы и X Титан и его сплавы .  [c.598]

Отечественные а- и псевдо-а-сплавы с содержанием алюминия до 3,0 % (сплавы ОТ4-0, о14-1, ПТ-7М, АТЗ) практически не чувствительны к коррозионному растрескиванию. Так, сплав АТЗ имеет порюговое значение = 85 МПа При повышении содержания в нем алюминия до 6 % (сплав АТ6) снижается до 25 МПа л/м [29]. Следует отме-тить, что содержание в псевдо-а-сплавах других легирующих элементов может в некоторых случаях резко снизить отрицательное влияние алюминия даже при его высоком содержании. Так, сплав ПТ-ЗВ, содержащий около 5 % алюминия, но легированный еще 1,5—2,0 % ванадия, практически не чувствителен к коррозионному растрескиванию, у него >110 МПа /м. В то же время добавление в сплавы, содержащие более 4 % алюминия, элементов замещения, стабилизирующих а-фазу (олово) или нейтральных упрочнителей (цирконий) заметно увеличивает их склонность к коррозионному растрескиванию. Значительно снижает чувствительность титановых сплавов к коррозионному растрескиванию 38  [c.38]

Титан (Ti). Кадмий ( d) Цирконий (2г Цинк (Zn). Индий (In), Tij o. . . Олово (Sn). Ртуть (Hg). Ванадий (V)  [c.232]

В настоящей работе исследовались адгезия и взаимодействие тонких пленок молибдена, ванадия и железа, нанесенных на неметаллические материалы — AI2O3 (сапфир), SiOj (стекловидный кварц), графит изучалась также смачиваемость этих металлизированных материалов расплавленными металлами (медью, серебром, оловом и свинцом) в зависимости от толщины металлической пленки в области малых толщин 10—W А. Последнее имеет большое значение при выборе на практике оптимальных толщин покрытий, так как толстые металлические пленки в основном имеют тенденцию к отслаиванию (разность коэффициентов терморасширения металла и неметалла). При малых же толщинах смачиваемость жидким металлом металлизированной поверхности может быть недостаточна.  [c.15]

Г. используется как полупроводниковый материал (в виде монокристаллов, аморфных плёнок) в электронике, полупроводниковых детекторах и приборах, измеряющих напряжённость пост, и перем. магн. полей, для изготовления плёночных сопротивлений, покрытий с высокой отражат. способностью, высокочувствит, термометров для измерения темп-р, близких к абс. нулю, Оксид Г. GeOj применяют при получении стёкол с высокими показателями преломления. Сплавы Г. с ниобием, ванадием, оловом обладают сравнительно высокими темп-рами перехода в сверхпроводящее состояние.  [c.442]

А/м, т. е. для олова dTidp)fj = —5,7-Ю К-см"/кгс= — 5,7.10 К/Па и dHJdp = 0,8-10 Э-см>гс = = 6,4-10 А/(м-Па). Типичные зависимости критической температуры сверхпроводников от давления представлены на рис. 5-5 (алюминий, цинк, кадмий) и 5-6 (ванадий).  [c.125]


Из жидко металлических теплоносителей наибольшей агреосивно стью против конструкционных материалов обладает галлий. Железо, углеродистая сталь, нержавеющая сталь (.при температурах более 200°С), алюминий, медь, титан, никель, марганец, магний, кадмий, олово, ванадий, цирконий, платина, индий, германий, серебро, золото не могут быть применимы в галлиевых нагревательных установках. В качестве кокструкцион-  [c.109]

Сплавы титана, циркония, ванадия, ниобия, молибдена, тантала и вольфрама Сплавы бериллия Олово, Sn > 99 % Оловяиио-свиицовые сплавы с малыми добавками других элементов или без них  [c.352]


Смотреть страницы где упоминается термин Олово - ванадий : [c.639]    [c.54]    [c.363]    [c.367]    [c.23]    [c.267]    [c.289]    [c.54]    [c.83]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Олово - ванадий



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Олово



© 2025 Mash-xxl.info Реклама на сайте