Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая совместимость компонентов

Помимо химической совместимости компонентов, в металлических композициях следует также учитывать и физическую (механическую) совместимость. Проблема физической совместимости связана с тем, что волокна и матрица имеют различные упругие постоянные, коэффициенты Пуассона и линейного расширения.  [c.57]

Химическая совместимость компонентов  [c.68]

Обычно химическую совместимость составляющих композиции подразделяют на термодинамическую и кинетическую [93 ]. Термодинамическая совместимость компонентов определяется их диаграммами равновесия. Однако для неравновесных систем, к которым относится большинство металлических композиционных материалов, эти диаграммы состояния могут лишь указывать тип или направленность реакций, а также возможные фазовые равновесия. Отсутствие термодинамической совместимости вовсе не исключает возможности использования данной комбинации составляющих, так как, варьируя параметры получения композиционных материалов, можно добиться приемлемой кинетической совместимости компонентов. Кинетическая совместимость зависит от таких термически активируемых процессов, как диффузия, скорость химических реакций, скорость растворения или образования новой фазы.  [c.57]


В композициях на основе титана и его сплавов, армированных волокнами бора, карбида кремния, двуокиси алюминия, отсутствует проблема физической совместимости, так как коэффициенты линейного расширения титана (ат1 = 8,4-10 °С ) и указанных волокон (ад = 6,3-С ) различаются несущественно с точки зрения внутренних остаточных напряжений. Однако химическая несовместимость компонентов является главной причиной, по которой в настоящее время отсутствуют высокопрочные титановые композиции, способные конкурировать с обычными титановыми или никелевыми сплавами даже по удельной прочности.  [c.76]

Для того, чтобы композит обладал стабильными свойствами при повышенных температурах, его компоненты должны быть химически совместимы. Понятие химической совместимости включает понятие термодинамической и кинетической совместимости.  [c.68]

Наряд> с химической совместимостью гфи создании композита важно обеспечить механическую совместимость, т.е. соответствие упругих констант, коэффициентов термического расширения и показателей пластичности компонентов, позволяющих достигнуть прочности связи для передачи напряжений через границу.  [c.69]

Выбор метода получения КМ основан на анализе межфазного взаимодействия компонентов, их химической и механической совместимости. Химическая совместимость — это способность компонентов в условиях эксплуатации не образовывать хрупких химических соединений, которые разрушаются под действием внешней нагрузки. Металлы в КМ могут образовывать твердые растворы, механические смеси или хрупкие химические соединения. Если в зоне соединения компонентов КМ не образуется хрупких интерметаллидных соединений, а формируется пластичный переходный слой, то такой КМ обладает высокими эксплуатационными свойствами. Прочность связи компонентов определяется их химической и механической совместимостью по модулям упругости, коэффициентам термического расширения, пределам прочности и показателям пластичности.  [c.122]

В табл. 21 приведены данные о физико-химической совместимости Mil и Мп при капиллярной пайке, полученные экспериментально (значения без скобок) и путем предварительного прогнозирования по характеру диаграмм состояния основ и легирующих компонентов М и М (значения в скобках).  [c.77]


Проблема химической совместимости в композиционных материалах с металлической матрицей решается двумя путями использованием низкотемпературной (в твердом состоянии) техники изготовления или выбором термодинамически стабильных составляющих фаз, находящихся в равновесии друг с другом. Соответствующая термомеханическая совместимость достигается путем использования пластичной матрицы, которая деформируется и принимает на себя все различные деформации, возникающие при термической обработке или путем выбора матрицы и армирующего компонента, имеющих близкие температурные коэффициенты линейного расширения.  [c.15]

Очевидно, наиболее важная задача химической совместимости связана с непосредственной реакцией между волокном и матрицей. Для композиций с легкоплавкими металлическими матрицами, такими, как бор — алюминий, химические реакции предотвращаются путем использования возможно более низких температур изготовления. Для матриц с малым сопротивлением ползучести высокие давления позволяют использовать более низкие температуры и получить наряду с этим хорошее уплотнение и связь. Некоторые системы, например бор—магний или медь — вольфрам, могут быть изготовлены методом пропитки расплавом, так как указанные компоненты систем не взаимодействуют друг с другом и являются взаимно нерастворимыми.  [c.43]

Химическая совместимость каждой композиционной системы с металлической матрицей, включенной в этот том, будет обсуждаться в последующих главах. Совместимость компонентов имеет важное значение в процессах производства и при использовании конструкционных композиций.  [c.44]

Для высокотемпературных защитных покрытий большую роль играет химическая совместимость материала основы и покрытия, т. е. характер и скорость их взаимодействия по границе контакта при воздействии высоких температур, а иногда и механических нагрузок. Если такое взаимодействие, включающее взаимную диффузию компонентов покрытия и основы, происходит интенсивно и сопровождается существенным изменением химического состава и структуры покрытия и основы, защитные свойства покрытия и необходимые прочностные параметры материала основы могут быть утрачены раньше допустимого срока.  [c.69]

Нагрев выше 100° С способствует разложению полимера при контакте со многими химическими агентами. При переработке ПВХ, когда температура материала поднимается до 150—250° С, протекают процессы термоокислительной и термомеханической деструкции. Кроме того, в процессе эксплуатации кабельных изделий происходит процесс физического старения, связанного с миграцией, выпотеванием и вымыванием некоторых компонентов, входящих в состав рецептур пластиката, что приводит к изменению структуры и нарушает созданное ранее равновесие совместимости компонентов.  [c.71]

Сочетание в одном материале веществ, существенно отличающихся по химическому составу и физическим свойствам, выдвигает на первый план при изготовлении и соединении КМ проблему термодинамической и кинетической совместимости компонентов. Под термодинамической совместимостью понимают способность контактирующих фаз находиться в состоянии термодинамического равновесия неограниченное время при температурах получения и эксплуатации.  [c.163]

II. В условиях сварочного нагрева проблема физико-химической и термомеханической совместимости компонентов формулируется не менее остро, чем при производстве КМ. Влияние сварки на структурные изменения в КМ можно рассмотреть на примере соединения, образующегося при проплавлении дугой волокнистого КМ поперек направления армирования (рис. 12.1). Если металл матрицы не обладает полиморфизмом (например, алюминий, магний, медь, никель и др.) то в соединении можно выделить четыре основные зоны 1 - зона, нагреваемая ниже температуры возврата матрицы (по аналогии со сваркой обычных материалов этот участок может быть назван основным) 2 - зона, ограниченная температурами возврата и рекристаллизации металла матрицы (зона возврата) 3 - зона, ограниченная температурами рекристаллизации и плавления матрицы (зона рекристаллизации) 4 -зона нагрева выше температуры плавления матрицы (сварной шов). Если матрицей в КМ являются сплавы титана, циркония, железа и других металлов, имеющих полиморфные превращения, то в зонах 3 к 4 появятся подзоны с полной или частичной фазовой перекристаллизацией матрицы.  [c.170]


Физико-химическая и термомеханическая совместимость компонентов  [c.492]

Быстро растущий в последнее время интерес к поверхностям раздела станет понятным, если проследить историю развития композитов с металлической матрицей. Ранние работы по композитным материалам были направлены на выявление принципов, определяющих их эксплуатационные характеристики. Для этой цели, были удобны простые модельные системы. При выборе модельных систем руководствовались в основном совместимостью упрочните-ля и матрицы модельные системы состояли из матриц (нанример,. серебра или меди), химически малоактивных но отношению к упрочнителям (например, вольфраму или окиси алюминия). Хотя в этих работах и признавалась важная роль поверхностей раздела, модельные системы позволяли сравнительно легко получать тип поверхности, обеспечивающий необходимую передачу нагрузки от одного компонента композита к другому. В системах, представляющих большой практический интерес, матрицами служат обычные конструкционные материалы, такие, как алюминий, титан,, железо, никель они обладают большими реакционной способностью и прочностью, чем матрицы модельных систем. Повышенная реакционная способность затрудняет управление состоянием поверхности раздела, а для передачи больших нагрузок требуется более высокая прочность этой поверхности. Таким образом, состояние поверхности раздела становилось все более важным фактором по мере того, как интересы исследователей перемещались от модельных систем к перспективным инженерным материалам.  [c.12]

Требования механического континуума и химического дисконтинуума выполняются полностью или почти полностью лишь в композитах, компоненты которых являются термодинамически совместимыми материалами. Яркий пример композита такого типа— эвтектический композит, где одна из фаз эвтектической смеси представляет собой компонент с большой твердостью. Термодинамический генезис твердой фазы практически исключает реактивную диффузию между составляющими композита и одновременно обеспечивает механическую непрерывность в направлении, перпендикулярном поверхности раздела.  [c.47]

Присадка должна быть стабильной по физическим и химическим свойствам и совместимой с другими компонентами смеси.  [c.174]

Бороалюминий можно отнести к композитам такого поколения [50], у которых благоприятному сочетанию механических свойств волокон и матрицы сопутствует хорошая физико-химическая их совместимость. В силу этого традиционные задачи прогнозирования прочностных свойств бороалюминия состоят в исследовании влияния объемных долей волокон, разброса их прочностных свойств и неравномерности укладки на развитие процессов разрушения. И относительно немного работ посвящено таким вопросам, как влияние прочности связи между компонентами и технологических режимов получения на прочность и механизмы разрушения бороалюминия [212].  [c.187]

Не вызывает сомнения, что необходимо учитывать молекулярную структуру, размер и форму молекул пластификаторов, полярность и степень их химической устойчивости, так как все это предопределяет эффективность, совместимость, характер сил межмолекулярного взаимодействия компонентов, механизм пластификации, комплекс. механических и других физических свойств, а также устойчивость при хранении и эксплуатации полимерных материалов.  [c.125]

Межфазное взаимодействие компонентов в композиционных материалах определяется их термодинамической, кинетической и механической совместимостью. Под термодинамической совместимостью понимают способность матрицы и армирующих элементов достаточно быстро устанавливать равновесное состояние при различной степени нафева как при изготовлении, так и в условиях эксплуатации. Такое состояние достигается, если компоненты обладают взаимной растворимостью. Кинетическую совместимость определяют как способность компонентов достичь метаста-бильного равновесия за счет процессов диффузии, адсорбции, химических реакций, релаксации и др. Механическая совместимость достигается соответствием в допустимых пределах характеристик упругости и пластичности, а также коэффициентов линейного расширения.  [c.355]

Наиболее важными компонентами большинства лакокрасочных систем являются пленкообразующие материалы, определяющие химические и физические свойства красок. Часто используют смеси пленкообразующих материалов, чтобы придать характерные свойства сформированной лакокрасочной пленке или приспособить систему к методу нанесения. Совместимость пленкообразующих материалов, имеющих разную химическую природу, является важным фактором при разработке рецептуры краски. Свойства красочных систем могут быть также модифицированы в определенных пределах природой н количеством других компонентов, чаще всего введением пигмента. Общая характеристика различных пленкообразующих материалов представлена в-табл. 8.2.  [c.464]

Кинетическая совместимость — способность компонентов композиционных материалов сохранять метастабильное равновесие в определенных температурно-временных интервалах [3]. Проблема кинетической совместимости имеет два аспекта 1) физико-химический — обеспечение прочной связи между компонентами и ограничение на поверхностях раздела процессов растворения, гетеро- и реакционной диффузии, которые ведут к образованию хрупких продуктов взаимодействия и деградации прочности армирующих фаз и композиционного материала в целом 2) термомеханический—достижение благоприятного распределения внутренних напряжений термического и механического происхождения и снижение их уровня обеспечение рационального соотношения между деформационным упрочнением матрицы и ее способностью к релаксации напряжений, предупреждающей перегрузку и преждевременное разрушение упрочняющих фаз [4].  [c.493]


Существуют композиты псевдопервого класса. Это системы, состоящие из кинетически совместимых компонентов, в которых принципиально возможно образование новых соединений на поверхности раздела, Однако оптимальная технология позволяет избежать их образования в ходе изготовления композита, эксплуатация которого осуществляется при достаточно низких температурах, исключающих возможность протекания химических реакций. Например, композит А1 -В, по-тучен-ный методом пропитки борных волокон расплавленным аитюминием, относится к третьему классу, так как при повышенных температурах на фанице раздела волокно - матрица может образоваться слой борида алюминия. Однако тот же композит, полученный по оптимальной технологии диффузионной сварки, следует отнести к композитам псевдопервого класса, поскольку реакция образования борида не успевает пройти.  [c.71]

КОМПОЗИТОВ обеспечивают получение широкого спектра служебных свойств. Для композитов, предназначенных для длительной высокотемпературной службы, решающими моментами при выборе являются не только достигаемые высокие механические свойства, но, главное, их стабильность в течение длительного времени при высоких температурах и нагрузках, в том числе при циклических режимах. Из этого следует, что при конструировании высокотемпературных композитов и подборе пар упрочняющая фаза—матрица большое значение приобретают не только прочность исходных составляющих композитов, их объемная доля, взаимное расположение и схема армирования, но и термическая стабильность компонентов композитов во взаимном контакте друг с другом, т. е. механическая совместимость (согласованность коэффициентов термического расширения) и физико-химическая совместимость (отсутствие интенсивного взаимодействия компонентов между собой, вызывающего деградацию структуры и свойств как армирующей фазы, так и матрицы). Из высокотемпературных интерметаллидов рассматриваются как перспективные NiAl [14], TiAl [15], фазы на основе системы Ti-Nb-Al [16], а также силициды Nb и Мо [15].  [c.214]

Химическая совместимость является более сложной проблемой. В этом томе рассматриваются два основных типа композиционных материалов естественные композиции ( in situ ), в которых две фазы находятся в термодинамическом равновесии при температурах их изготовления, и искусственно полученные композиции, в которых скорость химических реакций, приводящих к ухудшению совместимости между двумя фазами, достаточно мала, что обеспечивает хорошую совместимость фаз. Типичным примером первого типа композиций служат эвтектические сплавы, которые затвердевают в равновесных условиях. Для эвтектик химические потенциалы фаз равны и влияние удельной поверхностной энергии сведено до минимума. Для этих композиций может возникнуть вопрос стабильности при температурах, отличных от температуры изготовления материала, если имеет место заметная зависимость фазовых превращений или концентрации компонентов в фазах от температуры. К тому же, в связи с тенденцией уменьшения  [c.42]

Химическую совместимость характеризует и химический потенциал каждого из элементов, входящих в структурные компоненты композиционного материала. Химический потенциал отражает отношение концентрации данного элемента в канодой фазе  [c.43]

Сочетание в одном материале веществ, существенно различающихся по химическому составу и физическим свойствам, выдвигает на первый план при разработке, изготовлении и соединении композиционных материалов проблему термодинамической и кинетической совместимости компонентов. Под гермо-  [c.492]

Третья группа методов - направленное легирование компонентов, приводящее к вьфавниванию химических потенциалов матрицы и ар-мир>тощего элемента. Тем самым достигается уменьшение движущей силы взаимного растворения компонентов и снижается скорость диффузионного взаимодействия. Пример термодинамической оценки влияния лепфующих добавок на стабильность композиции Ni-W был рассмотрен ранее. Следует отметить, что этот способ позволяет добиться тер-.уюдинамической совместимости представ.ляющих практический интерес матриц и волокон только в редких случаях, однако он успешно применяется для улучшения их кинетической совместимости.  [c.75]

Выбор компонентов слоистых КМ осуществляют, исходя из их совместимости (механической и химической), в условиях изготовления и эксплуатации. Слоистые КМ применяют для изготовления биметаллического инструмента, высокопрочных и коррозионно-стойких конструкционных материалов (например, в ввде листов, панелей, биметал-, лических труб).  [c.128]

У композиционных материалов с металлической матрицей температура изготовления обычно более высокая и матрица имеет модуль упругости на один или два порядка выше, чем у органических матриц из смол, поэтому проблемы химической и механической совместимости в этих материалах гораздо более серьезны. Оба эти вопроса будут рассмотрены в определенной степени в главах, касающихся индивидуальных систем. В настоящее время достаточно знать ваишость того факта, что возникновение вышеуказанных проблем связано со свойствами, присущими матрице и армирующему компоненту.  [c.15]

Резюмируя, отметим, что композиционные материалы с металлической матрицей требуют разработки усложненной технологии с цепью реализации преимуществ, которые они могут дать в инженерных конструкциях. При разработке этих композиционных материалов следует тщательно рассмотреть проблемы химической и механической совместимости двух фаз. Вследствие высоких прочности и модуля упругости матрицы взаимодействие между матрицей и упрочняющим компонентом происходит в большей степени, чем в случае композиционных материалов с матрицей из смолы. Кроме того, многие из свойств металлических сплавов, полезных для инженерных конструкций, позвол 1ют использовать указанные сплавы в качестве матрицы композиционных конструкционных материалов.  [c.18]

Композиционные материалы по своей природе включают две или более различные фазы. Эти фазы должны быть совместимы друг с другом как физически, Так и химически, если имеет место синергическое соединение компонентов. Для композиционных материалов с металлической матрицей проблемы физической совместимости при армировании металлической матрицы пластинами или волокнами обусловлены различием физических констант материала, связывающих расширение с изменением давления (напряжения) или температуры. Проблемы химической совмести-  [c.41]

Растворимость в твердом состоянии также достигается, когда смесь различных твердых компонентов обладает высокой степенью гомогенности. Стекло является примером смеси, которая при высокой температуре образует жидкий раствор и сохраняет при нормальной температуре гомогенность, достаточную, чтобы образовать прозрачный, твердый раствор. Многие металлы также образуют твердые растворы из-за способности их компонентов оставаться тесно смешанными при переходе расплавов из жидкого состояния в твердое. Способность материалов органических покрытий тесно смешиваться друг с другом в твердом состоянии чаще относят к их совместимости, чем к растворимости. Это обусловлено очень большими размерами органических молекул, вследствие чего трудно наглядно себе представить полное или очень тесное их смешение и легче представить себе совместимость таких материалов из-за химического или физического сродства. Такая совместимость часто бывает ограничена определенными пределами, т. е. определенным содержанием одного материала в другом. Ниже будет показано, что введение третьего вещества, например летучего растворителя, может увеличить совместимость двух веществ до образования ими жидкого раствора, но после иопарения растворителя этот раствор не может существовать в виде твердого раствора.  [c.279]


Была предпринята попытка улучшить смазки введением в них крем-нийорганических соединений. Эти добавки улучшают вязкие свойства и устойчивость к повышенной влажности, но увеличивают износ и это bi i-зывает проблему совместимости с другими компонентами смазки при низких температурах. Введение эффективных химических пдотивоизнос-  [c.170]

К числу особенностей меди и ее сплавов, влияющих на их совместимость со способами пайки, относятся химическая стойкость окислов содержание во многих сплавах легкоиспаряющихся элементов — цинка, кадмия, марганца склонность кислородсодержащей меди и некоторых ее сплавов к водородной хрупкости повышенная способность меди образовывать интерметалл иды с некоторыми компонентами припоев повышенная способность меди и ее сплавов к хрупкому разрушению в контакте с жидкими припоями повышенная горячеломкость некоторых медных сплавов.  [c.265]

Резиноше смеси с различным составом компонентов. Многие смеси резины близки по составу и свойствам, поэтому в стандартах общего назначения указаны лишь группы резин с примерно одинаковыми свойствами. Поскольку принцшщ группирования различны и не основаны на классификации, существует несоответствие между группами, установленными разными стандартами. Так, Группы по ГОСТ 18829 - 73 на кольца резиновые не совпадают с группами по ГОСТ 8752 — 79 на манжеты резиновые и с группами по документации для авиационной, химической про-мьппленности и т. д. Основные свойства резины определяют свойства каучука. Комплекс ингредиентов в оптимальных соотношениях определяется особенностями каучука, требованиями совместимости со средой и условиями эксплуатации (назначением резины для УН, УПС, УВ), что позволяет получить резину с наилучшими физико-механическими свойствами. В связи с этим в большинстве стандартов исходными принципами группирования резин являются основная рабочая среда и тип каучука.  [c.80]

Введение в состав композиций пластификаторов позволяет получать пластикаты с заданной эластичностью в широком диапазоне температур, в том числе и низких. Последнее обеспечивает им, в частности, необходимую холодостойкость. Пластификаторы облегчают переработку пластиката, способствуя тем самым повышению его стабильности. Особенностью пластифицированного ПВХ является обратимость деформаций в широком диапазоне температур. Пластификаторы, предназначенные для кабельных ПВХ-пластикатов, должны обладать хорошей длительной совместимостью с полимером и другими компонентами рецептуры способностью образовать гомогенную массу при смешении нетоксичностью практической нелетучестью при температурах переработки и эксплуатации кабельных изделий миграционной устойчивостью, сохранением вязкотекучего состояния при низких температурах. Желательно, чтобы пластификаторы обладали также относительно высокой химической и микробиологической стойкостью, ВОДО-, влаго- и светостойкостью, малой горючестью.  [c.9]

В. Гарди, Ф. Боудена, Д. Тейбора, A. . Ахматова, В. Дерягина, P.M. Матвеевского, И.А. Буяновского и др. Показатели совместимости трибосистем при использовании различных смазочных сред и материалов поверхностей рассмотрены P.M. Матвеевским, И.А. Буянов-ским и О.В. Лазовской [32]. В условиях граничной смазки наибольщее влияние на изменение режима трения оказывает температура в контакте сопряженных поверхностей. При достижении критической температуры происходит десорбция молекул масла на поверхностях трения, смазочный слой теряет свою способность разделять поверхности трения, увеличиваются коэффициент трения и износ. Дальнейшее повышение температуры может привести к задиру, но иногда химические реакции активных компонентов присадки к маслу с поверхностными слоями приводят к снижению трения, что подробно рассмотрено Г. Хайнике [54] (см. гл. 6 и 7).  [c.320]

Для создания смазочных материалов, стойких к микробиологической коррозии, в них вводят антисептики. Важным требованием, предъявляемым к антисептикам, является их высокая эффективность при возможно малой концентрации, а также хорошая совместимость с другими компонентами смазки. Антисептик не должен изменять реологические и физико-химические свойства смазок, быть термостойким и нелетучим, не должен быть токсичным. Антисептики могут быть органическими (бензойная и салициловая кислоты, диметиламмонийхлорид, капроилрезорцин), металлоорганическими (производные ртути, олова и др.) и неорганическими. В качестве антисептиков можно использовать также определенные антиокислительные и противоизносные присадки и ингибиторы коррозии.  [c.113]


Смотреть страницы где упоминается термин Химическая совместимость компонентов : [c.11]    [c.382]    [c.47]    [c.77]    [c.87]    [c.18]    [c.131]    [c.62]   
Смотреть главы в:

Основы физикохимии и технологии композитов  -> Химическая совместимость компонентов



ПОИСК



Совместимость

Физико-химическая и термомеханическая совместимость компонентов



© 2025 Mash-xxl.info Реклама на сайте