Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Касательные напряжения при плоском поперечном -изгибе стержня

КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ ПРИ ПЛОСКОМ ПОПЕРЕЧНОМ ИЗГИБЕ СТЕРЖНЯ  [c.172]

Вторая гипотеза используется лишь при определении перемещений и связанной с ними осевой деформации волокон стержня, параллельных его оси. Эта гипотеза, таким образом, используется при определении лишь нормальных напряжений в плоскости поперечного сечения стержня на основании уравнений закона Гука. Касательные же напряжения в рамках второй гипотезы, разумеется, не могут быть определены при помощи закона Гука, поскольку согласно этой гипотезе сдвиги равны нулю. Для определения касательных напряжений используется уравнение равновесия. Картина здесь совершенно аналогична наблюдаемой в теории поперечного изгиба стержней гипотеза плоских сечений применяется лишь для определения и (путем использования закона Гука), для отыскания же х х и (или) Хгу рассматривается равновесие элемента балки, так как закон Гука применен быть не может, поскольку в рамках гипотезы плоских сечений сдвигов нет.  [c.386]


Ввиду наличия касательных напряжений в балке несколько искажается принятая нами ранее схема ее деформации. Согласно этой схеме считается, что плоские поперечные сечения стержня остаются в процессе изгиба плоскими, каждое из них лишь поворачивается вокруг нейтральной оси. При поперечном изгибе сечения балки не только поворачиваются, но и слегка искривляются. Рассмотрим иллюстрацию на рис. 10.5а. Здесь элемент балки толщиной dx (из схемы на рис. 10.2) изображен с двумя рядами малых квадратных элементов, равномерно расставленных вдоль левого и правого краев. Каждый элемент изображен находящимся в условиях чистого сдвига, кроме крайних верхних и нижних, которым отвечает условие т = 0. Нормальными напряжениями а пока пренебрежем. Каждый из квадратных элементов исказится под действием касательных напряжений, причем тем больше, чем ближе к оси х. Как показывает опыт, изначально горизонтальные площадки останутся в ходе деформирования практически параллельными друг другу. В этом процессе будет заметен преимущественно  [c.176]

Если плоский поперечный изгиб реализуется в плоскости хОг, в поперечных сечениях стержня появляются перерезывающие силы Q , связанные, как следует из условий статической эквивалентности, с напряжениями х ,. Попробуем установить формулу, с помощью которой можно выяснить характер распределения касательных напряжений по площади конкретного поперечного сечения и определять X. При выводе будем использовать два допущения  [c.89]

Предположение о том, что поперечное сечение стержня при кручении остается плоским, вполне аналогично такому же предположению в элементарной теории изгиба балок, которая была изложена в третьей главе. Но применительно к задачам изгиба это предположение выполняется во всех случаях с практически достаточной точностью, оно позволяет определить основные при изгибе напряжения — нормальные к плоскости сечения. Некоторое искривление поперечных сечений может происходить за счет касательных напряжений, но эти напряжения, как было показано, относительно невелики. Для кручения, когда возникают именно касательные напряжения, поперечные сечения действительно остаются плоскими только тогда, когда сечение ограничено концентрическими окружностями, как это было рассмотрено в 9.6. Чтобы построить решения в общем случае, добавим к напряженному состоянию (9.6.1) напряженное состояние, соответствующее антиплоской деформации по формулам (9.1.1). Получим  [c.292]


При совместном действии изгиба и кручения в поперечном сеченин стержня возникают нормальные и касательные напряжения. В точках стержня имеет место упрощенное плоское напряженное состояние. Условие прочности имеет вид  [c.251]

Таким образом, в теории В. 3. Власова касательные напряжения учитываются в уравнении равновесия (7), но их влиянием пренебрегают при определении нормальных напряжений и перемещений (угла закручивания стержня). В данном случае можно провести аналогию с чистым и поперечным изгибом. Нормальные напряжения определяют в предположении, что касательные напряжения отсутствуют и сечение в пределах прямолинейного участка контура остается плоским. Затем касательные напряжения определяют из условия равновесия отсеченной части сечения.  [c.190]

Если стержень не является призматическим, т. е. если его профиль меняется по длине, то в поперечных сечениях при растяжении и изгибе возникнут касательные напряжения, и сечения перестанут быть плоскими. В результате нормальные напряжения при растяжении будут распределяться неравномерно, а при изгибе закон их распределения отклонится от известного линейного закона. Точно так же при кручении стержня переменного профиля касательные напряжения в поперечных сечениях будут распределяться по иным законам, чем в призматическом стержне. Во всех случаях степень отклонения от закономерностей, установленных для призматического стержня, тем заметнее, чем резче меняется профиль стержня по его длине.  [c.225]

Для тонкостенных стержней в основном остаются справедливыми формулы при растяжении, кручении, изгибе, ранее используемые для стержней сплошного сечения. Но, как правило, в тонкостенных стержнях поперечные сечения не остаются плоскими, происходит депланация сечений. Особенно заметная депланация происходит в стержнях с открытым профилем. Если по условиям закрепления или нагружения стержня возникают препятствия депланациям сечений, то при кручении таких стержней, которое обычно называют стесненным или неравномерным, появляются существенные нормальные напряжения, а при изгибе—дополнительные касательные напряжения, которые необходимо учитывать при расчетах на прочность.  [c.235]

В поперечных сечениях балки действуют нормальные и касательные напряжения. Основное значение для длинных балок (стержней) имеют нормальные напряжения, распределяющиеся в сечении по линейному закону. Это является следствием закона Гука и гипотезы плоских сечений, согласно которой плоское поперечное сечение при деформации изгиба остается плоским и перпендикулярным к деформированной оси балки  [c.15]

Задаваясь некоторыми свойствами смещений, вытекаюпщми из умозрительного рассмотрения задачи, и предполагая отсутствие продольных составляющих касательных напряжений на боковых поверхностях стержней, Сен-Венан показал непротиворечивость принятых предположений и свел задачу о кручении к решению уравнения Лапласа для продольного смещения частиц первоначально плоского поперечного сечения стержня, а задачу об изгибе — к решению уравнения Пуассона для некоторой вспомогательной 56 функции (при этом распределение напряжений на торцах стержня находится из решения). Сен-Венан подробно разобрал кручение и изгиб стержней с эллипсоидальным и прямоугольным поперечным сечением, а также множество других частных задач. Все его изложение проникнуто чисто инженерным духом — стремлением довести решение до числа и графика, изучить наиболее опасные, с точки зрения прочности, области сечения и дать совершенно ясные примеры расчетов.  [c.56]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Общую теорию изгиба призматических стержней можно найти в статье И. Геккелера ). Из этой теории следует, что в поперечных сечениях, достаточно далеко расположенных от концов стержня и от точек приложения нагрузок, известная приближенная теория Якоба Бернулли дает точные значения для нормальных напряжений и для кривизны упругой линии. Как известно, теория Бернулли исходит из предположения, что поперечные сечения при изгибе стержня остаются плоскими и нормальными к центральной линии стержня. Распределение касательных напряжений по поперечному  [c.575]

К изогнутому стержню можно применить те же соображения, которыми мы руководствовались при рассмотрении случая кручения вала. Здесь мы также исходим из предположения, что поперечные сечения стержня остаются плоскими и после деформации. Если предел пропорциональности не перейден, то плоская форма сечений будет сохраняться с достаточной точностью во всех случаях, когда влиянием касательных напряжений на деформацию можно пренебречь. Мы предположим, что это условие выполняется и при переходе за пределы упругости и пропорциональногти. Тогда, аналогично тому, как это мы делали со сдвигами у> удлинения е в волокнах, удаленных на достаточное расстояние от нулевой линии сечения, можно разложить на две части е + е, причем удлинения г связаны с напряжениями, получающимися в сечении при изгибе, законом Гука.  [c.294]

В симметричном профиле, при совпадении силовой линии с осью симметрии, эпюра касательных напряжений симметрична, и поэтому момент этих напряжений относительно оси стержня равен нулю. Следовательно, в таком профиле центр изгиба совпадает с центром тяжести, и теория плоского изгиба симметричных профилей, и зло-женная в гл. 7 и 8, остается справедливой. Теория косого изгиба не. требует поправки, если профиль имеет две оси симметрии (прямоугольник, двутавр), а в случае чистого изгиба — при любой форме профиля. При несимметричных профилях и наличии поперечной сил1 теория изгиба (как плоского, так и косого) справедлива только в том случае, если силовая линия проходит через центр изгиба.  [c.277]


Смотреть страницы где упоминается термин Касательные напряжения при плоском поперечном -изгибе стержня : [c.417]    [c.417]    [c.152]   
Смотреть главы в:

Сопротивление материалов Учебное пособие  -> Касательные напряжения при плоском поперечном -изгибе стержня



ПОИСК



I касательная

Изгиб касательные напряжения

Изгиб плоский

Изгиб поперечный

Изгиб стержня

Изгиб стержня поперечный

Изгиб стержня стержня

Касательные напряжения поперечные

Касательные напряжения при поперечном изгибе

Напряжение изгибающие

Напряжение касательное

Напряжение плоское

Напряжение при изгибе

Напряжения Напряжения изгиба

Напряжения Напряжения касательные

Напряжения поперечные

Напряжения при поперечном изгибе

Стержень плоский

Стержни Напряжение изгиба

Стержни Напряжение касательное изгиба

Стержни Напряжения касательные



© 2025 Mash-xxl.info Реклама на сайте