Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическая проводимость металлов и сплавов

ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ МЕТАЛЛОВ И СПЛАВОВ  [c.30]

На электрическую проводимость металлов и сплавов влияют температура, концентрация примесей я атомы с некомпенсированными электронами. Рассчитать влияние всех этих факторов весьма сложно-. П. Вейс отмечал, что электрическую проводимость легко можно вычислить с ошибкой 200—300%, по очень трудно (а подчас и невозможно) с ошибкой 10%.  [c.35]

Связь между теплопроводностью и электрической проводимостью металлов и сплавов определяется числом Лоренца =Я,рэ/7. Для большинства металлов и сплавов величина L находится в пределах от 2,1.10-8 до 2,8.10-8 Вт-Ом.К-2 при 20 С.  [c.47]


Опыт, накопленный при изучении проводимости металлов и сплавов, экспериментальная техника, созданная для исследования электроизоляционных материалов, служат базой для определения электрических свойств покрытий. Рассматриваются многие свойства удельное электрическое сопротивление, электрическая прочность , электрическая проводимость, контактное сопротивление между покрытием и основным металлом, диэлектрическая проницаемость,, температурный коэффициент электрического сопротивления. Что касается керамических покрытий, которые используются в качестве электроизоляционного материала, то основным их свойством следует считать электрическую прочность. За электрическую прочность часто принимают напряженность пробоя, отнесенную к усредненной толщине покрытия.  [c.85]

Электрическая проводимость и электрическое сопротивление металлов и сплавов  [c.292]

По удельному электрическому сопротивлению р металлические проводниковые материалы можно разбить на две основные группы металлы высокой проводимости, у которых р при нормальной температуре составляет не более 0,05 мкОм-м, и металлы и сплавы высокого сопротивления, имеющие при тех же условиях р не менее 0,3 мкОм-м. Проводниковые материалы первой группы применяются в основном для изготовления обмоточных и монтажных проводов, жил кабелей различного назначения, шин и т. д. Проводниковые материалы второй группы используются при производстве резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.  [c.111]

Структурное состояние металлов и сплавов влияет на их электрические и магнитные характеристики. Благодаря этому оказывается возможным контролировать не только однородность химического состава, но и структуру металлов и сплавов, а также определять механические напряжения. Широко применяют вихретоковые измерители удельной электрической проводимости и другие приборы для сортировки металлических материалов и графитов по маркам (по химическому составу). С помощью вихретоковых приборов контролируют качество термической и химико-термической обработки деталей, состояние поверхностных слоев после механической обработки (шлифование, наклеп), обнару-  [c.83]

Наиболее совершенны универсальные приборы и установки со встроенными микропроцессорами и микроЭВМ. Установка УВМ-ЮНП (табл. 18) предназначена для контроля качества одно- и двухслойных объектов из неферромагнитных металлов и сплавов. Используя последовательно три частоты тока возбуждения ВТП, она позволяет определять толщину слоев (например, в двухслойных трубах) и их удельную электрическую проводимость. Вспомогательные операции (установка нуля, выбор режима кон-  [c.158]


Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление р при нормальной температуре не более 0,05 мкОм-м, и сплавы высокого сопротивления, имеющие р при нормальной температуре не менее 0,3 мкОм-м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п, Металлы и сплавы высокого  [c.186]

Штамповку импульсным магнитным полем применяют для обжима и раздачи трубчатых заготовок, калибровки трубчатых деталей, формовки рифлений, вырубки плоских деталей, пробивки отверстий в деталях из различных металлов и сплавов, сборки. Для обработки предпочтительны металлы и сплавы с высокой электрической проводимостью. Материалы с недостаточно высокой электрической проводимостью (углеродистые и коррозионно-стойкие стали) деформируют через передающую среду или через спутник — промежуточный материал с высокой электропроводностью, помещаемый на заготовку. Толщина заготовок 1,5 — 2 мм для стали, 1,7 —2,5 мм для латуни, 2 — 3 мм для алюминиевых и магниевых сплавов.  [c.167]

Атомы металла при самодиффузии, а также примеси, атомы которых замещают атомы основного. металла в кристаллической решетке, перемещаются путем обмена местами с вакансиями (рис, 10, а) примеси, располагающиеся в междоузлии (при диффузии) передвигаются путем перехода из одного междоузлия в другое (рис. 10, 6). Точечные дефекты Шоттки и Френкеля влияют на некоторые физические свойства. металла (электрическую проводимость, магнитные свойства и др.), а также на фазовые превращения в металлах и сплавах.  [c.19]

Материалы высокой проводимости классифицируют по группам медь, сплавы меди с оловом (бронзы), сплавы меди с цинком (латуни), алюминий, серебро и прочие металлы и сплавы. В особую группу выделяют материалы для электрических контактов. В табл.1 приведены свойства наиболее распространенных металлов высокой проводимости.  [c.514]

Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности. В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности. Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель. Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]

Особую группу материалов с высокой электрической проводимостью образуют сверхпроводники. С понижением температуры удельное электросопротивление всех металлов монотонно падает (рис. 18.7). Однако есть металлы и сплавы, у которых при критической температуре значение р резко падает до нуля — материал становится сверхпроводником. Сверхпроводимость обнаружена у 30 элементов и у около 1000 сплавов.  [c.579]

Структурное состояние металлов и сплавов влияет на их электрические и магнитные характеристики. Благодаря этому оказывается возможным контролировать не только вариации химического состава, но и структуру металлов и сплавов, а также определять механические напряжения в них. Широко применяют вихретоковые измерители удельной электрической проводимости и другие приборы для сортировки металлических материалов и графитов по маркам (по химическому составу). С помощью электромагнитных приборов контролируют качество термической и химико-термической обработки деталей, состояние поверхностных слоев после механической обработки (шлифование, наклеп), обнаруживают остаточные механические напряжения, выявляют усталостные трещины в металлах на ранних стадиях их развития, обнаруживают наличие а-фазы и т. д.  [c.92]


Необходимо определить электрическую проводимость быстрорежущих сталей с различной термообработкой, а также цветных металлов и сплавов  [c.244]

В этом плане и рассматриваются работы, проведенные за рубежом и в нашей стране. Известно, что при определении диэлектрических параметров материалов электроды должны обладать высокой электрической проводимостью, хорошо и надежно контактировать с образцом, не оказывая при этом на него отрицательного влияния (деформировать, вступать в химическое взаимодействие, диффундировать в толщину), не должны изменять свою форму и размеры под воздействием окружающих сред и температуры (плавиться, окисляться и т. д.). Применение жидких электродов из ртути и олова, используемых при измерении диэлектрических показателей слюд [16], нежелательно вследствие испарения первой и образования пористой оксидной пленки на поверхности олова, вносящих погрешности в результаты измерения сопротивления. Использование накладных электродов из пластин или фольги различных металлов (нержавеющая сталь, серебро, платина, платинородиевый сплав) [17, 22] также приводит к искажению результатов измерений  [c.10]

Металлические проводниковые материалы могут быть разделены на материалы высокой проводимости и материалы высокого сопротивления. Металлы с высокой проводимостью используются для проводов, кабелей, обмоток трансформаторов, электрических машин и т. д. Металлы и сплавы высокого сопротивления применяются в электронагревательных приборах, лампах накаливания, реостатах, образцовых сопротивлениях и т. п.  [c.277]

Удельное сопротивление и удельная электрическая проводимость металлов, сплавов и угля  [c.21]

Рнс. 5-4-8, Сравнение зависимости удельного электрического сопротивления меди р от температуры Т с металлами, обладающими хорошей проводимостью (/) н с хуже проводящи.ми металлами и сплавами (Я). См, также рис. 6-3-1.  [c.270]

В основе электротехнических угольных материалов лежат графит и уголь — разновидности почти чистого углерода, являющегося полупроводником, вследствие чего графит и уголь имеют отрицательный температурный коэ( ициент удельного сопротивления, хотя по проводимости они немногим уступают металлам и их сплавам, в силу чего в различных электротехнических устройствах угольные изделия используются как проводящие элементы. Важнейшими видами электротехнических угольных изделий являются 1) щетки для электрических машин 2) угольные электроды (для электрических печей, электролитических ванн и сварки) 3 осветительные угли 4) непроволочные сопротивления  [c.264]

Тип припоя выбирают, сообразуясь с родом спаиваемых металлов или сплавов, требуемой механической прочностью, коррозионной стойкостью, стоимостью и — при пайке токоведущих частей — с удельной электрической проводимостью припоя.  [c.225]

Увеличение температуры нагрева приводит к возрастанию электрической проводимости и падению прочности. Систематический контроль за изменением электрической проводимости нагревающихся деталей из алюминиевых сплавов (например, обшивки самолета) позволяет заранее сказать о допустимой потере прочности. Это возможно до температур подкалки металла на воздухе.  [c.157]

В результате полиморфного превращения образуются новые кристаллические зерна, имеющие другой размер и форму, поэтому такое превращение также называют перекристаллизацией. Полиморфное превращение сопровождается скачкообразным изменением всех свойств металлов или сплавов удельного объема, теплоемкости, теплопроводности, электрической проводимости, магнитных свойств, механических и химических свойств и т. д.  [c.36]

Металлизация — покрытие поверхности изделия слоем металла или сплава для придания ей физических, химических и механических свойств, отличных от свойств металлизируемого материала. Применяется для защиты изделий от коррозии, износа, эрозии, повышения контактной электрической проводимости, в декоративных целях. Металлизация позволяет обрабатывать изделия, собранные в конструкции, однако получается шероховатая поверхность.  [c.239]

Металлы характеризуются прочностью, твердостью и пластичностью, коррозионной стойкостью, жаропрочностью, высокой электрической проводимостью и многими другими ценными свойствами. Они хорошо обрабатываются литьем и давлением, режутся и свариваются. В технике широко используются магнитные свойства металлов, их способность противостоять агрессивным химическим средам. Чистые металлы — железо, медь, алюминий, никель, цинк, свинец и другие — составляют основу огромного количества сплавов. Изменяя химический состав чистых металлов, вво-  [c.3]

Трущиеся детали в зависимости от назначения изготовляют из конструкционных, фрикционных, износостойких и антифрикционных материалов обширной номенклатуры. Во многих случаях на конструкционный материал наносят износостойкие покрытия, пленки и др. Иногда при особых требованиях к электрической проводимости (скользящие контакты, ламели коллекторов электродвигателей), стойкости к воздействию химически агрессивных сред (газов, в том числе горючих рабочих жидкостей в системах питания двигателей и ракет кислот и щелочей) и др. трущиеся детали изготовляют из сталей и сплавов специального назначения, окислов металлов, спеченных и неметаллических материалов.  [c.321]

Обычно материалами для таких контактов служат серебро и сплавы на его основе. Основным преимуществом серебра является его высокая электрическая проводимость. Однако при воздействии электрической дуги оно окисляется и подвергается электроэрозионному изнашиванию. Окисление не приводит к значительному росту переходного электрического сопротивления, так как оксид серебра электропроводен и при нагреве восстанавливается. Чистое серебро применяют в слабонагруженных контактах при небольшой частоте переключений. Серебро технологично при производстве проката и наиболее дешево из всех благородных металлов.  [c.581]


Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление р [см. формулу (В.3)1 при нормальной температуре не более 0,1 мкОм -м, и сплавы высокого сопротивления с р при нормальной температуре не менее 0,3 мкОм -м. Металлы высокой проводимости используют для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Сплавы высокого сопротивления применяют при изготовлении резисторов, электронагревательных элементов и т. п.  [c.11]

Тип припоя выбирают в зависимости от рода спаиваемых металлов или сплавов, требуемой механической прочности, коррозионной стойкости, стоимости и (при пайке токоведущих частей) удельной электрической проводимости припоя.  [c.41]

Проводниковые материалы представляют собой металлы и сплавы. Металлы имеют кристаллическое строение. Однако основное свойство кристаллического тела — анизотропность — не наблюдается у металлов. В период охлаждения металла одновременно зарождается большое количество элементарных кристаллов, образуются кристаллиты (зерна), которые в своем росте вступают в соприкосновение друг с другом и приобретают неправильные очертания. Кристаллиты приближаются по своим свойствам к изотропным телам. Высокая тепло-и электропроводность металлов объясняется большой концентрацией свободных электронов, не принадлежащих отдельным атомам. При отсутствии электрического поля равновероятны все направления теплового движения электронов в металле. Под воздействием электрического поля в движении электронов появляется преимущественное направление. При этом, однако, составляющая скорости электрона вдоль этого направления в среднем невелика, благодаря рассеянию на узлах решетки, Рассеяние электронов возрастает при уведичении степени искажения решетки. Даже незначительное содержание примесей, таких как марганец, кремний, вызывает сильное снижение проводимости меди. Другой причиной снижения проводимости металла или сплава может явиться наклеп— т. е. волочение, штамповка и т. п. Твердотянутая проволока имеет более низкую проводимость, чем мягкая, отожженная. При отжиге происходит рекристаллизация металла, сопровождающаяся повышением проводимости. Ее величина приближается к первоначальной благодаря восстановлению правильной формы кристаллической решетки. Во многих случаях желательно получение проводникового материала с низкой проводимостью такими свойствами обладают сплавы — твердые растворы двух типов. Твердыми растворами замещения называют такие, в которых атомы одного из компонентов сплава замещают в кристаллической решетке второго компонента часть его атомов. В твердых растворах внедрения атомы одного из компонентов сплава размещаются в пространстве между атомами второго, расположенными в узлах кристаллической решетки. Если атомы первого и второго компонентов сплава близки по размерам и строению электронных оболочек  [c.272]

Проводниковые материалы классифицируют в зависимости от удельного электрического сопротивления на металлы и сплавы высокой проводимости, криопроводники и сверхпроводники, сплавы с повышенным электросопротивлением.  [c.125]

Необходимо определить электрическую проводимость образцов из быстрорежущей стали с различной термообработкой и цветных металлов и сплавов с полющью компенсационной схемы Поггендорффа и индукционного метода с применением образцовых катушек после соответственно предписанной настройки (градуировки) приборов (см. инструкции по эксплуатации приборов).  [c.247]

Припой представляет собой сплав, с помощью которого производится соединение металлических деталей за счет взаимодейстдия жидкого припоя с поверхностными слоями металлов. Припой имеет температуру плавления ниже, чем у соединяемых металлов, и обладает способностью их смачивать. При пайке происходит частичное растворение основных металлов в жидком припое, диффузия атомов компонентов припоя в эти металлы, химические реакции между компонентами припоя и основными металлами и другие процессы. Припои должны иметь хорошую жидкотекучесть, малый интервал температур кристаллизации, механическую прочность, коррозионную стойкость и высокую электрическую проводимость. Припои с температурой плавления Г,и, ss 450 С называют мягкими, припои с Т л > 450° С твер-  [c.280]

При образовании смесей из перечисленных фаз электросопротивление сплава, согласно правилу Н.С. Курнакова, растет по закону сложения. На рис. 18.6 это показано на примере сплавов, образующих твердые растворы ограниченной растворимости и эвтектические смеси. Подобные сплавы сохраняют высокую электрическую проводимость химически чистых металлов, но по сравнению с ними имеют некоторые дополнительные преимущества более низкуй температуру плавления, лучшую жидкоте-кучесть (для сплавов эвтектического состава), более высокую твердость и износостойкость, если один из сплавляемых металлов обладает таковыми, и т.д.  [c.573]

Одной из структурно-чувствительных характеристик металлов является электрическая проводимость, которая позволяет оценитыетепень легиро-ванности Твердого раствора, а в отдельных случаях и дисперсность выделений, Кроме трго, она коррелирует с плотностью дислокаций. Электрическую проводимрсть сплавов определяли на установке У-303,, работающей по принципу двойного моста, а также методом вихревых токов на приборах ВЭ-20Н отечественного производства и Сигма тест фирмы Ф( стер ( ог5/ег ). -  [c.32]

Медь и ее сплавы. Медь— это вязкий, красноваторозового цвета металл. По электрической проводимости медь занимает среди металлов второе место после серебра. Кроме того, медь характеризуется высокой теплопроводностью (в 6 раз больше, чем у стали и железа) и коррозионной стойкостью. Температура плавления меди—1083°С (1356°К), плотность — 8,9 г/см .  [c.12]

По изменению электрической проводимости можно судить о качестве точечной контактной и шовной контактной сварки алюминиевых сплавов. В случае наличия литого ядра электропроводность в зоне последнего для сплавов Д16АМГ уменьшается на 10... 15 % по сравнению с электропроводностью основного металла. Для В-95, АМ-6 и других сплавов это изменение может достигать 15...30 %. При наличии дефектов типа слипание или непровар электропроводность литого ядра примерно равна электропроводности основного металла.  [c.341]


Смотреть страницы где упоминается термин Электрическая проводимость металлов и сплавов : [c.12]    [c.73]    [c.210]    [c.6]    [c.224]    [c.719]   
Смотреть главы в:

Индукционная структуроскопия  -> Электрическая проводимость металлов и сплавов



ПОИСК



Металлы и сплавы Металлы

Проводимость

Проводимость электрическая

Сплавы металлов

Электрическая проводимость и электрическое сопротивление металлов и сплавов

Электрический ток в металлах



© 2025 Mash-xxl.info Реклама на сайте