Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическая проводимость и электрическое сопротивление металлов и сплавов

Электрическая проводимость и электрическое сопротивление металлов и сплавов  [c.292]

В основе электротехнических угольных материалов лежат графит и уголь — разновидности почти чистого углерода, являющегося полупроводником, вследствие чего графит и уголь имеют отрицательный температурный коэ( ициент удельного сопротивления, хотя по проводимости они немногим уступают металлам и их сплавам, в силу чего в различных электротехнических устройствах угольные изделия используются как проводящие элементы. Важнейшими видами электротехнических угольных изделий являются 1) щетки для электрических машин 2) угольные электроды (для электрических печей, электролитических ванн и сварки) 3 осветительные угли 4) непроволочные сопротивления  [c.264]


По удельному электрическому сопротивлению р металлические проводниковые материалы можно разбить на две основные группы металлы высокой проводимости, у которых р при нормальной температуре составляет не более 0,05 мкОм-м, и металлы и сплавы высокого сопротивления, имеющие при тех же условиях р не менее 0,3 мкОм-м. Проводниковые материалы первой группы применяются в основном для изготовления обмоточных и монтажных проводов, жил кабелей различного назначения, шин и т. д. Проводниковые материалы второй группы используются при производстве резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.  [c.111]

Опыт, накопленный при изучении проводимости металлов и сплавов, экспериментальная техника, созданная для исследования электроизоляционных материалов, служат базой для определения электрических свойств покрытий. Рассматриваются многие свойства удельное электрическое сопротивление, электрическая прочность , электрическая проводимость, контактное сопротивление между покрытием и основным металлом, диэлектрическая проницаемость,, температурный коэффициент электрического сопротивления. Что касается керамических покрытий, которые используются в качестве электроизоляционного материала, то основным их свойством следует считать электрическую прочность. За электрическую прочность часто принимают напряженность пробоя, отнесенную к усредненной толщине покрытия.  [c.85]

Электросопротивление р аморфных сплавов сильно отличается ОТ электросопротивления кристаллических сплавов, несмотря на то что концентрация электронов проводимости в аморфных сплавах относительно высокая. У аморфных сплавов оно гораздо выше (табл. 3.6), причем изменение электрического сопротивления при переходе от жидкого к аморфному состоянию происходит непрерывно. Кроме того, оно очень мало изменяется с температурой. Это изменение может быть даже отрицательным, вплоть до температуры кристаллизации, что характерно для аморфных тройных и бинарных сплавов, содержащих элементы из начала и конца ряда переходных металлов Nb -Ni, Zr-( u, Pd,Fe, Ni, o и др.) (рис 3.16).  [c.241]

Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление р при нормальной температуре не более 0,05 мкОм-м, и сплавы высокого сопротивления, имеющие р при нормальной температуре не менее 0,3 мкОм-м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п, Металлы и сплавы высокого  [c.186]


Важным фактором, управляющим сложными закономерностями изменения электросопротивления аморфных сплавов, описанными в предыдущем разделе, является сорт компонентов сплава, причем в каждом температурном интервале этот фактор проявляется по-разному. До сих пор для объяснения этого привлекалась теория электросопротивления жидких металлов, в основе которой лежит учет взаимодействия электронов проводимости. В эту теорию внесены поправки, учитывающие, в зависимости от типа аморфного сплава и температурной области, наличие в аморфных сплавах различного рода дефектов. В этом разделе мы покажем, как с помощью теории Займана [56], позволяющей с успехом объяснить поведение сопротивления жидких металлов, можно также объяснить и некоторые особенности поведения электрического сопротивления аморфных сплавов, которые показаны на рис. 6.26, в  [c.202]

Обычно материалами для таких контактов служат серебро и сплавы на его основе. Основным преимуществом серебра является его высокая электрическая проводимость. Однако при воздействии электрической дуги оно окисляется и подвергается электроэрозионному изнашиванию. Окисление не приводит к значительному росту переходного электрического сопротивления, так как оксид серебра электропроводен и при нагреве восстанавливается. Чистое серебро применяют в слабонагруженных контактах при небольшой частоте переключений. Серебро технологично при производстве проката и наиболее дешево из всех благородных металлов.  [c.581]

Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление р [см. формулу (В.3)1 при нормальной температуре не более 0,1 мкОм -м, и сплавы высокого сопротивления с р при нормальной температуре не менее 0,3 мкОм -м. Металлы высокой проводимости используют для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Сплавы высокого сопротивления применяют при изготовлении резисторов, электронагревательных элементов и т. п.  [c.11]

В этом плане и рассматриваются работы, проведенные за рубежом и в нашей стране. Известно, что при определении диэлектрических параметров материалов электроды должны обладать высокой электрической проводимостью, хорошо и надежно контактировать с образцом, не оказывая при этом на него отрицательного влияния (деформировать, вступать в химическое взаимодействие, диффундировать в толщину), не должны изменять свою форму и размеры под воздействием окружающих сред и температуры (плавиться, окисляться и т. д.). Применение жидких электродов из ртути и олова, используемых при измерении диэлектрических показателей слюд [16], нежелательно вследствие испарения первой и образования пористой оксидной пленки на поверхности олова, вносящих погрешности в результаты измерения сопротивления. Использование накладных электродов из пластин или фольги различных металлов (нержавеющая сталь, серебро, платина, платинородиевый сплав) [17, 22] также приводит к искажению результатов измерений  [c.10]

Металлические проводниковые материалы могут быть разделены на материалы высокой проводимости и материалы высокого сопротивления. Металлы с высокой проводимостью используются для проводов, кабелей, обмоток трансформаторов, электрических машин и т. д. Металлы и сплавы высокого сопротивления применяются в электронагревательных приборах, лампах накаливания, реостатах, образцовых сопротивлениях и т. п.  [c.277]

Удельное сопротивление и удельная электрическая проводимость металлов, сплавов и угля  [c.21]

Рнс. 5-4-8, Сравнение зависимости удельного электрического сопротивления меди р от температуры Т с металлами, обладающими хорошей проводимостью (/) н с хуже проводящи.ми металлами и сплавами (Я). См, также рис. 6-3-1.  [c.270]

В выражении (1) предполагается, что электрическая проводимость не зависит от напряженности электрического поля. В метал- ) лах и сплавах это действительно так. Здесь мы можем сослаться на 5 прямую экспериментальную проверку закона Ома, предпринятую, 5 Бриджменом [1]. Он изучал справедливость закона Ома на тонких (от десятых до сотых долей микрона) пленках серебра и золота. По его данным, по крайней мере до плотностей тока 1-10 А/см , для металлов можно считать закон Ома справедливым. Исследования электрического взрыва проводников, в которых проводились измерения температурной зависимости сопротивления при плотностях тока до 5-10 А/см [2], подтвердил этот вывод.  [c.4]


Электрическое сопротивление — это сопротивление, которое встречает ток при прохождении по цепи. Единицей сопротивления является ом (ом). Величина сопротивления проводника зависит от его длины, площади поперечного сечения, материала проводника и температуры. Различные проводниковые материалы обладают различными значениями удельного сопротивления. Удельное сопротивление (р) есть сопротивление одного метра проводника, выполненного из данного металла или сплава при поперечном сечении в 1 мм , измеренное при температуре 293,15° К (20° С). Величина, обратная удельному сопротивлению называется удельной проводимостью (7).  [c.66]

Проводниковые материалы классифицируют в зависимости от удельного электрического сопротивления на металлы и сплавы высокой проводимости, криопроводники и сверхпроводники, сплавы с повышенным электросопротивлением.  [c.125]


Смотреть страницы где упоминается термин Электрическая проводимость и электрическое сопротивление металлов и сплавов : [c.73]    [c.367]   
Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Электрическая проводимость и электрическое сопротивление металлов и сплавов



ПОИСК



Металлы и сплавы Металлы

Проводимость

Проводимость электрическая

Сопротивление металлов

Сопротивление электрическое

Сплавы металлов

Сплавы сопротивления

Электрическая проводимость металлов и сплавов

Электрический ток в металлах

Электрическое сопротивление металлов и сплавов



© 2025 Mash-xxl.info Реклама на сайте