Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физико-химические свойства обработанных поверхностей

Физико-химические свойства обработанных поверхностей  [c.12]

Физико-механические свойства обработанных поверхностей определяются в основном химическим составом данного, металла, микроструктурой, прочностью, твердостью, остаточными напряжениями, износостойкостью и коррозионной устойчивостью.  [c.65]

Качество обработанной поверхности характеризуется как точностью ее изготовления по отношению к размерам, заданным конструктором, так и ее физико-механическими свойствами и неровностью, полученными в результате срезания с нее стружки, т. е. в результате технологического процесса ее изготовления. Физико-механические свойства обработанных поверхностей определяются в основном прочностью, твердостью, остаточными напряжениями, микроструктурой, химическим составом, износоустойчивостью и коррозионной устойчивостью. Неровность же поверхности определяется макрогеометрией (макронеровностями), волнистостью и микрогеометрией (микронеровностями) и является характеристикой поверхности с точки зрения ее геометрического отклонения от теоретической поверхности, заданной на чертеже.  [c.71]


При выборе способов обеспечения, заданных условиями эксплуатации, точности изготовления деталей и качества их рабочих поверхностей, следует иметь в виду, что качество обработанной поверхности и точность деталей машин в основном характеризуются геометрическими параметрами (макрогеометрией, волнистостью, шероховатостью, направлением штрихов обработки, точностью взаимного расположения элементарных поверхностей и др.) физико-механическими свойствами поверхностного слоя деталей (наклепом, остаточными напряжениями) и физико-химическими свойствами поверхностного слоя, которые определяются взаимодействием ненасыщенных силовых полей поверхностных атомов твердого тела с силовыми полями молекул внешней среды, находящихся в контакте с поверхностью твердого тела.  [c.369]

Эксплуатационные свойства деталей, обработанных резанием и другими методами, зависят от взаимодействия обрабатываемого материала и режущего элемента инструмента, материала резца, физико-механических и физико-химических свойств обрабатываемых материалов, вибраций режущего инструмента относительно обрабатываемой поверхности [44, 93].  [c.369]

В монографии обобщены закономерности влияния структуры на модуль упругости и совместного влияния геометрических параметров поверхности на коэффициент жесткости и несущую способность литых деталей. Дан сравнительный анализ существующих способов физико-термического, химического и механического упрочнения поверхности деталей. Приведены методы определения и практического регулирования структуры, физико-химических свойств и остаточных напряжений в поверхностном слое отливок. Рассмотрены процессы заполнения форм жидким металлом, формирование и классификация дефектов поверхности и поверхностного слоя литых и механически обработанных деталей. Описаны особенности технологической оснастки и технологии новых и существующих способов формообразования для получения отливок с упрочняющим геометрическим орнаментом.  [c.2]

Среди физико-химических процессов, определяющих процесс резания, основное значение имеет процесс пластической деформации при образовании стружки. От характера пластической деформации, деформационного упрочнения и разрушения металла при стружкообразовании зависят точность обработки деталей и качество поверхностного слоя. Параллельно со стружкообразованием при резании протекают процессы контактного взаимодействия инструмента со стружкой и обработанной поверхностью, сопровождаемые интенсивным тепловыделением, трением, адгезионным взаимодействием обрабатываемого материала и инструмента. Явления, сопровождающие контактное взаимодействие, существенно влияют на свойства обработанной поверхности, определяют стойкость инструмента и устойчивость процесса резания. Современная теория резания рассматривает процессы стружкообразования, контактных взаимодействий и формирования поверхности детали как единый процесс разрушения и деформирования металла.  [c.565]


Известные в промышленности и лабораторной практике технологические процессы поверхностной обработки алюминиевых сплавов можно классифицировать в зависимости от методов обработки, применяемых для этой цели. Однако такая классификация группирует лишь методы обработки и ничего не говорит о физико-химических свойствах, которые приобретает обработанная поверхность. Поэтому при классификации технологических процессов поверхностной обработки целесообразно, наряду с методами, характеризовать и свойства, которые при данном методе можно сообщить металлу.  [c.11]

Химическими факторами, вызывающими коррозию, являются влага, влажный воздух, газы, испарения кислот, капельки пота, попадающие на обработанную поверхность при касании ее руками, и т. д., при этом происходит окисление металла и превращение его в химическое соединение. Степень интенсивности возникновения коррозии зависит от физико-химических свойств металла. Наиболее интенсивно коррозионному разрушению подвергаются углеродистая сталь и чугун и менее интенсивно-легированные стали, цветные металлы и их сплавы (медь, латунь, бронза и т. д.).  [c.364]

При определенных значениях этих параметров величина шероховатости обработанных ЭХО поверхностей зависит от физико-химических свойств материала заготовки.  [c.38]

Физико-химические свойства материала режущей части инструмента могут оказывать влияние на микрогеометрию обработанной поверхности за счет изменения адгезионных процессов на контактирующих поверхностях и способности режущей кромки инструмента сохранять свой контур в процессе резания. По мере износа режущая кромка оказывает на микрогеометрию обработанной поверхности как чисто геометрическое влияние, так и влияние за счет изменения триботехнических характеристик контактирующих поверхностей.  [c.114]

Растворимость анодных продуктов в электролите, скорость диффузии их в электролит, состав и физико-химические свойства анодной пленки имеют существенное значение для процесса полирования. Поэтому этот процесс у различных материалов происходит неодинаково. У многих металлов и сплавов (медь, никель, алюминий, нержавеющие хромистые и хромоникелевые стали) сглаживание сопровождается появлением блеска на обработанной поверхности. У некоторых сплавов (стали карбидного класса, бронзы, латуни) наблюдается блеск без заметного сглаживания шероховатостей. Ряд металлов и сплавов (олово, свинец, серый чугун, высококремнистые стали) вовсе не полируется. Вместо сглаживания образуется сильно травленая поверхность с толстыми темными пленками.  [c.111]

Микроскопическая неоднородность физико-механических свойств характерна для всякого твердого тела. В металлах она обязана анизотропии кристаллов. Обработанная поверхность в связи с особенностями ее образования отличается несравненно большей неоднородностью как по химической активности, так и физико-механическим свойствам. Кроме того, она имеет много микроскопических дефектов в виде трещин и пустот. Хотя подобные дефекты структуры возникают в процессе образования всей массы металла, но количество их в поверхностном слое возрастает в результате механических и тепловых воздействий при обработке.  [c.56]

Физико-механические свойства металла, определяемые его химическим составом, структурой, величиной зерна, оказывают большое влияние на характер образования стружки, а тем самым и на шероховатость обработанной поверхности,  [c.393]

Свариваемость металлов ультразвуком определяется их физико-механическими свойствами при температуре сварки, свойствами механической колебательной системы и рядом других факторов. Например, состоянием поверхности свариваемых металлов, обработанных тем или иным способом термическим, механическим, химическим, искусственным нанесением электроизолирующих или декоративных покрытий и т. п.  [c.27]

Основными параметрами, характеризующими обрабатываемость материала, являются сопротивление материала резанию, стойкость инструмента и качество обработанной поверхности. Обрабатываемость материала резанием зависит от его химического состава и физико-механических свойств.  [c.420]


Разработаны и опубликованы рекомендации по выбору СОЖ для операций обработки заготовок из различных материалов на металлорежущих станках. Рекомендации учитывают, как правило, обрабатываемость материала заготовки (его химический состав, физико-механические свойства, структуру, твердость), вид обработки, инструментальный материал и в отдельных случаях особенности геометрии режущего инструмента, требования к качеству обработанной поверхности.  [c.159]

Качество обработанной поверхности характеризуется точностью ее изготовления в соответствии с размерами, задагшыми конструктором, ее физико-механическими свойствами и шероховатостью, полученными в результате обработки. Физико-механические свойства обработанных поверхностей определяются в основном химическим составом данного металла, микроструктурой, прочностью, твердостью, остаточными напряжениями, износостойкостью и коррозионной стойкостью.  [c.56]

Однако при таком способе выглаживания из-за биения детали величина внедрения выглаживателя, а следовательно, и сила выглаживания колеблются в определенных пределах. В результате этого явления обработанная поверхность имеет различную шероховатость и неоднородна по физико-химическим свойствам. Поэтому при таком выглаживании предъявляются повышенные требования к жесткости системы СПИД.  [c.127]

К числу наиболее важных конструктивно-технологических мероприятий, повышающих эксплуатационные свойства мащин, можно отнести улучшение формы деталей с целью снижения напряжений в опасном сечении применение технологических способов, обеспечивающих наи-лучщую текстуру материала детали (штампованные заготовки, формообразование, например зубьев, зубчатых колес накатыванием) уменьшение количества операций и правильное их чередование снижение уровня динамических нагрузок повышением точности изготовления и сборки, а также применением оптимальных зазоров и др. снижение концентрации нагрузки вследствие повышения точности изготовления и сборки, увеличения жесткости узла, оптимального взаимного расположения деталей, узлов и др. повышение чистоты впадин у зубчатых колес обеспечение рациональной ориентации обработанных рисок и оптимальной шероховатости рабочих поверхностей деталей обеспечение стабильности физико-механических свойств поверхностного слоя, особенно вблизи опасного сечения, для чего основание впадин торцов зубчатых колес следует шлифовать до химико-термической обработки обеспечение стабильности физико-механических, химических и геометрических свойств материала деталей обеспечение наиболее благоприятной эпюры остаточных напряжений при отсутствии локальных растягивающих напряжений в упрочненном слое применением упрочняющей обработки обеспечение контроля изделий в процессе проектирования и производстве на соответствие их основных эксплуатационных свойств техническим условиям на изготовление и приемку.  [c.413]

Эффективность процесса абразивнои обработки материалов и качество обработанной поверхности во многом определяются режущими свойствами и износостойкостью абразивного матертала. Кроме того, абразивы должны обладать следующими свойствами высокой твердостью и прочностью в сочетании с некоторой хрупкостью значительной тепло- и электропроводностью физико-химической инертностью к обрабатываемому материалу.  [c.180]

Прочность адгезионной связи между волокнами и матрицей оказывает решающее влияние на прочность композиций с короткими волокнами. Необходимо добиваться максимальной сдвиговой прочности по границе раздела волокно — полимер. В промышленности стеклопластиков успешно применяются аппреты, способствующие повышению адгезионной прочности стеклянных волокон к полиэфирным и эпоксидным смолам. Физико-химические процессы, протекающие при аппретировании стеклянных волокон, изучены достаточно хорошо [63]. В качестве аппретов обычно используют кремнийорганические соединения, в которых органический радикал совместим с полимерной матрицей. При гидролизе одной или нескольких связей =Si—OR в молекуле аппрете образуются силанольные группы =Si—ОН, способные реагировать с аналогичными группами гидрофильной поверхности стеклянных волокон. Теоретически мел<ду стеклом и полимерной матрицей образуются ковалентные связи. Важнейшей особенностью стеклопластиков с обработанными аппретами стеклянными волокнами является значительно меньшая потеря ими прочности и жесткости при выдержке во влажной среде. Аппреты повышают прочность при изгибе и сдвиге однонаправленных стеклопластиков, однако они оказывают значительно меньший эффект на прочность при растяжении. В полимерных композициях с короткими волокнами использование аппретов целесообразно, если они обеспечивают заметное улучшение их свойств. В полиэфирных и эпоксидных стеклопластиках адгезионная прочность между стеклянным волокном и связующим достаточно высока и без использования аппретов вследствие хорошего смачивания волокон жидкими смолами, однако в термопластах, наполненных волокнами любых типов, значительно труднее добиться хорошего смачивания волокон полимерами и высокой адгезионной прочности между ними. Большое число исследований проведено по нахождению усло-, ВИЙ аппретирования стеклянных волокон, вводимых в термопла-  [c.97]

Качество обработанной поверхности любых материалов характеризуется большим количеством различных параметров, которые укруп-ненно можно разделить на две группы физико-химические и геометрические параметры, причем в зависимости от свойств материала и методов обработки наиболее существенное влияние на эксплуатационные характеристики изделий оказывают те или иные из них.  [c.45]


Из приведенных выше расчетных зависимостей следует, что шероховатость обработанной поверхности снижается с уменьшением главного и вспомогательного углов в плане резца, подачи и с увеличением радиуса при вершине резца. Указанные параметры влияют на шероховатость в основном непосредственно как геометрические факторы. Глубина и скорость резания, радиус округление режущего лезвия и его износ, смазывающие и охлаждающие технологические среды, вибрации, свойства обрабатываемого и инструментального материала оказывают влияние на шероховатость через физико-химические процессы в зоне резания и формирования ПС. Оценка шероховатости по расчетным зависимостям, полученным из геометрических соображений, может с приемлемой точностью проводиться для поверхностей с шероховатостью Для более чистых поверхностей определение шероховатости проводится по эмпирическим зависимостям. В ряде случаев фактическая высота микронеровностей существенно выше расчетной, что связагю в основном с образованием нароста на передней грани инструмента, особенно в зоне его неустойчивого состояния. Периодичность образования нароста и его срывы ухудшают не только микрогеометрию поверхности, но и приводят к неоднородности ПС по структуре и механическим свойствам. Экспериментально установлено, что на микрогеометрию обработанной поверхности влияет упругая (), пластическая  [c.112]

На шероховатость обработанной поверхности оказывает существенное влияние химический состав, структура и физико-механические свойства обра-  [c.113]


Смотреть страницы где упоминается термин Физико-химические свойства обработанных поверхностей : [c.52]    [c.31]    [c.248]    [c.154]    [c.292]    [c.23]    [c.87]   
Смотреть главы в:

Трение и модифицирование трибосистем  -> Физико-химические свойства обработанных поверхностей



ПОИСК



Поверхность свойства

Физико-химические свойства

Химическая физика



© 2025 Mash-xxl.info Реклама на сайте