Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы физики полупроводников

Этот случай подробно рассмотрен в ряде книг по основам физики полупроводников, например [95]. Поэтому мы здесь не будем на нем больше останавливаться.  [c.240]

Дополнительные разрешенные частоты при определенных условиях могут возникать и в интервале между оптическими и акустическими ветвями колебаний. Интересно отметить, что поскольку теория колебаний атомов и теория электронных состояний в кристаллах имеют общую математическую основу, то по аналогии с локальными модами колебаний появление дефектов может приводить и к разрешенным энергетическим (локальным) состояниям электронов в области энергетической щели. Подобные состояния, действительно, обнаружены и имеют большое значение, например, в физике полупроводников.  [c.220]


В книге излагаются основы физики явлений, происходящих в диэлектрических, полупроводниковых и магнитных материалах. Приводится классификация материалов н описываются их электрические, физико-химические и механические свойства. Рассматривается технология производства электротехнических материалов. В седьмое издание включены сведения о новых материалах сверхпроводниках, полупроводниках и активных диэлектриках, расширены сведения о качестве материалов.  [c.2]

В настоящем курсе излагаются основы материаловедения и технологии полупроводников, которые позволяют получить общее представление об основных закономерностях образования полупроводниковых фаз, о механизмах их роста, условиях получения, а также получить представление о наиболее широко используемых в промышленности методах производства объемных полупроводников и эпитаксиальных полупроводниковых пленок с заданными свойствами. Эти знания необходимы студентам, специализирующимся в области физики полупроводников, для понимания специальной литературы. Действительно, почти каждая статья, посвященная исследованию свойств полупроводников или созданию приборов на их основе, начинается с описания метода получения материала, так как его свойства, как будет показано в этом курсе, тесно связаны с методом его получения.  [c.5]

Кинга написана на основе курса лекций, читавшихся автором в течение многих лет на физическом факультете МГУ. Книга хорошо известна в нашей стране и широко используется а качестве учебного пособия по общему курсу физики о университетах и физико-технических институтах, В новом издании основное содержание книги осталось без существенных изменений. Переработке подверглись главным образом главы, посвященные электронным явлениям в металлах и полупроводниках, а также явлениям в контактах дано понятие о квантовом описании электронных процессов в твердых телах кроме того, внесены более мелкие изменения в других частях книги.  [c.928]

Дальний порядок упрощает анализ свойств кристаллов, так как информация о взаимном расположении всего лишь нескольких атомов, составляющих элементарную ячейку, позволяет последовательным переносом такой ячейки построить модель кристаллической решетки кристалла любых размеров. Дальний порядок в расположении атомов кристаллов является основой современной физики кристаллических полупроводников, на которой базируется полупроводниковая электроника.  [c.5]

Необходимо отметить, что отсутствие дальнего порядка в расположении атомов некристаллических полупроводников не означает их полного беспорядка. Сохраняется ближний порядок, что во многом обусловлено химической природой атомов, составляющих материал, которая не изменяется при переходе от кристаллического состояния к некристаллическому. Наличие ближнего порядка дало возможность, хотя и не на количественном, а только на качественном уровне развить физику некристаллических полупроводников. В основу ее легло положение, выдвинутое советскими учеными А. Ф. Иоффе и А. Р. Регелем о том, что основные, фундаментальные свойства вещества определяются ближним, а не дальним порядком в расположении атомов.  [c.10]


В последние годы разработаны теоретические основы диффузионной сварки и получены важные результаты по диффузионным процессам, обеспечивающим образование монолитного соединения твердых неорганических материалов любой природы без изменения их физико-механических свойств. Среди решенных проблем — диффузионное соединение не только однородных, но и разнородных материалов и сплавов, теплофизические характеристики которых резко различны диффузионная сварка деталей больших толщин и изделий разветвленных сечений деталей из пористых, волокнистых и порошковых материалов неметаллических материалов (стекло, полупроводники, керамика, ситалл, кварц, графит, феррит, керметы и т. д.) с металлами расширение применения диффузионной сварки для ремонта и восстановления деталей машин и механизмов.  [c.10]

Полупроводники качественно отличаются от металлов природой химических связей, структурой и физико-механическими свойствами. От диэлектриков полупроводники отличаются лишь количественно. Полупроводники — это вещества, имеющие при нормальной температуре удельную проводимость в интервале 10" —10 Ом" м , которая зависит от вида и количества примесей, структуры вещества и внешних условий температуры, давления, электрических и магнитных полей, освещения, облучения ядерными частицами. В соответствии с зонной теорией у металлов валентные электроны легко переходят на уровни зоны проводимости и все валентные электроны участвуют в создании тока. У полупроводника энергетическая зона валентных электронов занята полностью и отделена от зоны проводимости зоной запрещенных энергий. К полупроводникам относятся вещества, для которых запрещенная зона равна (0,16- -5,1) 10" Дж. Вещества с большей шириной запрещенной зоны относятся к диэлектрикам. Основу полупроводникового прибора составляет кристалл полупроводникового материала с одним пли несколькими электронно-дырочными р—м-переходами, которые получают,, вводя разнообразные примеси в различные участки одного и того же кристалла.  [c.230]

В этой главе мы попытались описать моделирование МОП-транзисторов с помощью численных методов. Были обсуждены физические основы и кратко рассмотрены все более усложняющиеся численные методы. Безусловно, только развитие основ физики полупроводников приведет к разработке моделей, пригодных для более надежного моделирования работы приборов, т. е. моделей, которые соответствовали бы достижениям технологии на современном уровне миниатюризации. Наиболее важная цель моделирования, а именно способность прогнозировать характеристики нового прибора на этапе проектирования, может быть достигнута только в том случае, если физические параметры в основных уравнениях будут проанализированы еще более тщательно. Возможно, для этого придется полностью пересмотреть некоторые общепринятые предположения и приближения и, по-видимому, это единственный способ освободиться от огромного количества подгоночных параметров и эвристических формул, которые все еще моделируют с той или иной точностью некоторые сложные физические явления. До разработки наиболее адекватной модели нужно провести очень тщательный анализ собственно физических процессов. Широкие возможности аппарата численного анализа в предсказании свойств приборов были продемонстрированы на примере программы моделирования МОП-транзистора -MINIMOS.  [c.446]

Существование металлов, полупроводников и диэлектриков, как известно, объясняется зонной теорией твердых тел, полностью основанной на существовании дальнего порядка. Открытие того, что аморфные вещества могут обладать теми же электрическими свойствами, что и кристаллические, привело к переоценке роли периодичности. В 1960 г. А. Ф. Иоффе и А. Р. Регель высказали предположение, что электрические свойства аморфных полупроводников определяются не дальним, а ближним порядком. На основе этой идеи была развита теория неупорядоченных материалов, которая позволила понять многие свойства некристаллических веществ. Большой вклад в развитие физики твердых тел внесли советские ученые А. Ф. Иоффе, А. Р. Регель, Б. Т. Коломиец, А. И. Губанов, В. Л. Бонч-Бруевич и др. Губановым впервые дано теоретическое обоснование применимости основных положений зонной теории к неупорядоченным веществам.  [c.353]


Фотомагнитоэлектрический эффект (эффект Кикоина — Носкова). Этот эффект обнаружен в 1934 г. советскими физиками И. К. Кикоиным и М. М. Носковым. Сущность эффекта поясняет рис. 7.15. Достаточно сильно поглощающий полупроводник, облучаемый светом, помещается в магнитное поле, направление которого перпендикулярно световому потоку. Если бы не было магнитного поля, то оптически генерируемые электроны и дырки диффундировали бы в глубь полупроводника и мы имели бы эф( ект Дембера. Магнитное поле отклоняет электроны и дырки в разные стороны и тем самым пространственно разделяет их в направлении, перпендикулярном направлениям света и поля. Возникает ЭДС, которая может достигать нескольких десятков вольт. Приемники на основе данного эффекта применяют для приема инфракрасного излучения.  [c.182]

Законы К. м. составляют фундамент наук о строении вещества. Они иозволили выяснить строение электронных оболочек атомов и расшифровать атомные и молекулярные снектры, установить природу хим. связи, объяснить периодич. систему элементов Менделеева, понять строение и свойства атомных ядер. Поскольку свойства макроскопич. тел определяются движением и взаимодействием частиц, из к-рых они состоят, законы К. м. объясняют многие макроскопич. явления, напр. температурную зависимость и величину теплоёмкости макроскопич. систем (газов, твёрдых тел). Законы К. м. лежат в основе теории строения твёрдых тел (металлов, диэлектриков, полупроводников) и её многочисл. техн. приложений. Только на основе К. м. удалось последовательно объяснить магн. свойства веществ а создать теорию ферромагнетизма и антиферромагнетизма. К. м. естеств. образом решила ряд проблем классич. статистич. физики, напр, обосновала теорему Нернста (см. Третье начало термодинамики), разрешила Гиббса парадокс. Важное значение имеют макроскоиич. квантовые эффекты, проявляющиеся,  [c.273]

М. стала источником новых идей в методов в физике твёрдого тела и материаловедении. В связи с задачами М. созданы, напр., устройства с управляемыми электронными и ионными пучками диаметром в неск. атомов, ионные источники (от протонов до тяжёлых ионов) широкого диапазона анергий (с диаметром пучка, близким к размерам отд. ионов), аппаратура для выращивания монокристаллов и многослойных структур, где толщина, состав и строение каждого слоя контролируются с точностью до параметра решётки (см. Гетероструктура, Эпитаксия), и т. д. Созданы новые пьезоэлектрические материалы, феррогранаты, материалы с высокой чувствительностью к действию света, рентг. излучения, электронных и ионных пучков и т. д. Одно из достижений микроэлектронного материаловедения — сверхрешётки на основе множества чередующихся сверхтонких слоёв полупроводников типа  [c.154]

В физике Э. с. в. принимается наиб, широкое толкование понятия вещества как субстанЕщи, играющей роль строительного материала физ. тела протяжённая (и потому не чувствительная к форме и размерам) система частиц и полей, составляющих основу внутр. структуры тела. Такое определение охватывает наряду с обычным, состоящим из электронов и атомных ядер веществом элек-тронно-дырочную жидкость s полупроводниках, адронные системы (нейтронное вещество, пионный конденсат, кварк-глюонная плазма), системы фотонов (излучение) и элек-трон-позитроиных пар и др. С нек-рыми оговорками сюда же относится материал микроскопич. систем типа тяжёлого ядра ядерная материя) или сгустка вторичных частиц, порождённых соударением частиц высоких энергий. Особым типом вещества нужно считать вакуум (вакуумное состояние)—сложную систему виртуальных частиц.  [c.506]

Много неясного остается еще в понимании природы и роли водорода в формировании свойств пленок в понимании особенностей поведения в гидрированных полупроводниках различных остаточных и легирующих примесей в понимании физико-химических процессов, лежащих в основе деградации приборных структур под влиянием освещения, ионизиру-  [c.106]

Кристаллические структуры твердых тел обусловлены межатомными связями, возникающими в результате взаимодействия электронов с атомными остовами. Вывод металлических структур — ОЦК, ГЦК и ПГ — из электронного строения атомов представляет кардинальную проблему физики металлов [1, 21. В основе квантовой теории металлов лежит теория энергетических зон [3 —11]. Она рассматривает поведение электронов в периодическом поле решетки. Кристаллическая структура определяется дифракционными методами и вводится в зонную модель априори как экспериментальный факт, без объяснения ее происхождения. Разрывы непрерывности энергий электронов приводят к образованию зон Бриллюэна, ограниченных многогранниками, форма которых зависит от симметрии кристалла. Характер заполнения зон и вид поверхности Ферми различны для металлов, полупроводников и изоляторов. Расчеты позволяют получить з нергетическую модель, количественно описывающую энергетическое состояние электронов и физические свойства твердых тел. Однако из зонной модели нельзя вывести кристаллическую структуру, поскольку она вводится в основу построения зон как экспериментальный факт. Расчеты зонных структур и физических свойств металлов получили широкое развитие благодаря теории псевдопотенциала 112—19]. Они позволяют оценить стабильность структур металлов, но не вскрывают физическую природу конкретной геометрии решетки.  [c.7]

Изменение поглощающих свойств полупроводниковых материалов в области края межзонных оптических переходов при нагревании известно давно. В курсе общей физики [5.1] обсуждается оптическое явление, на основе которого можно разработать метод бесконтактного измерения температуры слой иодида ртути HgI2 на отражающей подложке при нагревании изменяет свой цвет от желтого до красного. Соединение HgI2 является полупроводником с шириной запрещенной зоны g 2,4 эВ (что соответствует длине волны примерно 517 нм, относящейся к зеленому диапазону видимого спектра), которая изменяется с температурой как (1Е /(1в —10 эВ/К [5.2].  [c.109]


В монографии профессора Орегонского универсйтета (США) М. Катлера рассматриваются теоретические вопросы электронной структуры жидких полупроводников и дается обзор экспериментальных данных по электрическим, магнитным и другим свойствам конкретных материалов. Отдельная глава посвящена описанию экспериментальных методов и обсуждению проблем, возникающих при экспериментальном исследовании жидких полупроводников. Рассматривается интерпретация экспериментальных данных, в частности на основе теории молекулярных связей. Книга отличается оригинальным и четким истолкованием сложных физических явлений на основе современных представлений физики неупорядоченных систем, богатством фактического материала.  [c.4]

В книге даётся характеристика главных типов твёрдых тел, основанная на различии их физических свойств (металлы, полупроводники, изоляторы, ионные соединения, молекулярные кристаллы), сжато описаны структуры и физические свойства некоторых наиболее важных простых веществ и химических соединений и изменения этих свойств в зависимости от температуры. Главное место в книге отведено теоретическому рассмотрению важнейших физических свойств твёрдых тел. Силы сцепления в твёрдых телах, электрические, магнитные, оптические и другие свойства рассматриваются на основе зонной теории, позволяющей с единой точки зрения охватить достаточно широкий класс веществ. Несколько глав отведено изложению основ квантовой механики и приближённых методов решеиия квантовомеханических задач. В книге дан ряд ссылок на монографии по специальным разделам физики и теории твёрдого тела, а также многочисленные ссылки на оригинальные работы. В приложении дана библиография опубликованных за последние годы работ советских авторов по вопросам физики твёрдого тела. Кннга рассчитана на научных работников, работающих в области исследования свойств и структуры твёрдых тел, а также аспирантов и студентов старших курсов, специализирующихся в той же области. Книга будет полезна также для инженеров и технологов соответствующих производств, работающих над повышением своего научного кругозора.  [c.2]

Книга Зейтца будет полезна для широкого круга научных работников, в первую очередь физиков и химиков, занятых исследованиями -структуры и свойств твёрдых тел, а также процессов, протекающих в этих телах. Несмотря на интенсивную разработку некоторых других отделов физики, интерес и внимание к твёрдому телу отнюдь не ослабевают. Этот интерес нетрудно понять, так как не только в теоретических исследованиях, но и при решении большинства практических задач современной техники чаще всего приходится иметь дело именно с твёрдой фазой. Хорошо изве.стны успехи в создании широкого круга новых материалов, обладающих самыми разнообразными физическими свойствами механическими, тепловыми, электрическими, магнитными и т. д. Создание новых материалов будет значительно ускорено, если работающие в этом направлении нау 1ные работники, инженеры-исследователи и технологи будут хорошо владеть основами теории твёрдого тела. Необходимость в серьёзном курсе по теории твёрдого тела для подготовки квалифицированных специалистов по физике металлов, полупроводников, изоляторов, кристаллолюминофо-ров и т. п. совершенно ясна. Книга Зейтца поможет аспирантам и студентам старших курсов соответствующих специальностей ознакомиться с кругом идей современной теории твёрдого тела.  [c.8]

Предлагаемая читателю книга написана на основе лекций по отдельным разделам физики поверхностных явлений, прочитанных авторами для студентов, аспирантов и научных работников Московского Университета им. М.В. Ломоносова, а также ряда университетов России, Армении, Болгарии. Германии, Нидерландов и Украины. Книга выходит за рамки конспекта лекций и задумана как учебное пособие, ставящее своей целью ввести читателя в курс современных представлений о природе и механизме протекания разнообразных явлений на свободных поверхностях твердых тел и на границах между ними. Как мы покажем ниже, эти проблемы касаются самых различных областей естественных наук. Ввиду ограниченности объема учебного пособия в качестве ключевого направления мы выбрали рассмотрение основных особенностей электронных и молекулярных процессов, разыгрывающихся на поверхностях, а также взаимосвязей между этими процессами. В связи с бурным развитием микро- и наноэлектроники определенное предпочтение отдано явлениям, происходящим на поверхностях полупроводников. Это соответствует и научным интересам авторов книги. В книгу не включены явления на границе полупроводник-электролит, процессы, протекающие на поверхности при высоких (лазерных) уровнях фотовозбуждения поверхностной фазы, процессы на поверхностях ферроэлектриков, модельные теоретические расчеты и некоторые другие вопросы.  [c.3]

Долгое время будут актуальны и поиски новых методов накачки. В этом плане следует упомянуть об изучении особенностей оптической накачки полупроводниковых квантовых генераторов и генераторов на углекислом газе. Настойчиво ведется поиск способов электронного возбуждения генерации излучения парами сложных молекул. Разработан фотодиссоциационный лазер успешно применяется лазер, действующий на основе ионизации молекул электронным ударом. В Институте физики твердого тела и полупроводников АН БССР исследуется возможность создания лазера с накачкой синхротронным излучением. Сотрудники этого института и Белорусского государственного университета разрабатывают теорию отражения света от усиливающих сред. Возможно, что на этом пути будут построены генераторы нового типа.  [c.125]

Поразительные возможности современной полупроводниковой электроники и особенно микроэлектроники реализуются только по мере разработки и освоения выпуска полупроводниковых материалов с разнообразными физическими свойствами. Эти материалы позволили создать на их основе миниатюрные усилители и генераторы электрических сигналов, работающие в широком диапазоне частот интегральные микросхемы для современных компьютеров преобразователи одного вида энергии в другой полупроводниковые светодиоды, лазеры и фотоприемники, работающие в ИК- и видимом диапазонах (полупроводниковые лазеры и фотоприемники — составляющие элементной базы волоконно-оптических линий связи) детекторы излучений и частиц магнитные, пьезо-, сегне-тоэлектрические и многие другие устройства. В то же время открытие новых явлений и потребность создания более совершенных приборов для научных исследований стимулируют поиск, разработку и освоение производства новых материалов с требуемыми свойствами. Между физикой и технологией полупроводников существует тесная взаимосвязь, и часто оказывается, что получение новых физических результатов становится невозможным без постоянного прогресса в технологии.  [c.3]

Тугоплавкие окислы принадлежат к наиболее интересной группе высокотемпературных материалов. Их характеризует стабильность в окислительной атмосфере, высокая температура плавления, большая прочность при сжатии при низких температурах это хрупкие кристаллы их стоимость невысока. Системы окислов являются основой производства керамических и огнеупорных материалов, а также стекла. Хотя монокристаллы чистых окислов интенсивно исследуются, существует еще много непонятного в процессах течения и деформации кристаллов окислов, а также в вопросах химии и физики многих систем окислов. Хотя решетки большинства кристаллов окислов просты, они гораздо сложнее, чем решетки металлов и полупроводников, которые изучены гораздо лучше. Эта сложность структуры, т. е. одновременное присутствие атомов металла и кислорода, а также трудность выращивания монокристаллов окислов высокой чистоты и со строго регулируемой стехиометрией сильно препятствовали расширению фундаментальных исследований, в которых можно было бы дать более точные сведения о свойствах материалов. К тому же, лищь недавно было проведено систематическое изучение влияния малых количеств примесей на строение и электрические свойства окислов.  [c.24]



Смотреть страницы где упоминается термин Основы физики полупроводников : [c.216]    [c.580]    [c.425]    [c.323]    [c.781]    [c.344]    [c.258]    [c.9]    [c.588]    [c.47]    [c.585]    [c.660]    [c.330]    [c.205]    [c.123]    [c.448]    [c.555]   
Смотреть главы в:

Электротехнические материалы  -> Основы физики полупроводников



ПОИСК



Полупроводники



© 2025 Mash-xxl.info Реклама на сайте