Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение полых призматических тел

Кручение полых призматических тел  [c.179]

Осуществление эксперимента мембранной аналогии в случае задачи о кручении призматического тела с профилем в виде многосвязного сечения представляет большие трудности. Однако для качественного изучения конкретной задачи о кручении полого призматического тела, как уже указывалось для случая односвязных областей, мембранная аналогия имеет большую ценность.  [c.185]


Эту аналогию можно применить и к кручению полых призматических стержней. Для этого нужно теорему о циркуляции касательного напряжения (26) выразить, использовав терминологию мембранной аналогии.  [c.254]

О кручении некоторых призматических полых тел. Инж. сб., т. VI, 1950, стр. 17— 46.  [c.688]

Обзор литературы показывает, что задача об основных колебаниях прямоугольных мембран с эксцентрическим круговым вырезом не была рассмотрена дру ими исследователями 2), Анализ напряженного состояния конструкций исследуемой конфигурации уже привлекал внимание ряда исследователей (двумерные задачи, кручение призматических балок двусвязного поперечного сечения и т. д.), а также инже-неров-конструкторов для определения полей перемещений и результирующих напряжений в пластинках такой формы, как показано на рис. 1 [2].  [c.60]

На рис. 77, а представлена одна из конструкций несущих платформ. Основными конструктивными элементами платформы являются пол, усиленный продольными ребрами замкнутого сечения, боковые борта, имеющие наклонный участок при переходе к полу, обвязки переднего борта, обвязки боковых бортов и задняя обвязка. Все обвязки имеют замкнутое сечение. Таким образом, платформа представляет собой пространственную тонкостенную конструкцию, которая эквивалентна открытой призматической (складчатой) системе. Расчет такой конструкции можно вести методом конечных элементов (МКЭ) с использованием балочного и оболочечного элементов. Для расчета автомобильных конструкций в настоящее время наиболее часто используют плоский треугольный симплекс-элемент. Например, таким элементом можно моделировать борта платформы. Однако функция, характеризующая перемещения в плоскости такого элемента, представляет собой полином первой степени, поэтому распределение деформаций и напряжений по стороне элемента постоянно, в то время как при закручивании открытых призматических (складчатых) систем каждая складка-пласти-на работает на изгиб в своей плоскости, что приводит к неравномерному распределению деформаций по ширине пластины. На рис. 77, б приведено характерное распределение деформаций по контуру призматической оболочки при кручении, соответствующее эпюре секториальных координат. По ширине наклонной пластины происходит резкое изменение продольных деформаций. Если этот участок моделировать треугольным элементом, то распределение деформаций будет равномерным, что приведет к большим ошибкам  [c.135]

Применение электрической сеточной модели для решения краевых задач рассмотрено в разделе 23. С применением сеточной модели могут также решаться задачи кручения и изгиба призматических стержней. Решение этих задач с применением непрерывного электрического поля было рассмотрено в разделе 21.  [c.320]


НОМ состоянии полых цилиндров (6) испытания призматических образцов при изгибе и кручении.  [c.621]

Стержни призматические полые — Жесткость при кручении 248, 250, 267 — Кручение — Аналогия мембранная 254 — Напряжения при кручении касательные 261, 264, 265  [c.827]

Конкретным примером может служить классическая задача Сен-Венана о кручении призматических стержней. Кинематические краевые условия в этой задаче состоят в том, что проекция поля скоростей в торцах на поперечное сечение стержня является полем вращения твердого тела, а на боковой поверхности поле скоростей может быть произвольным. При локальной постановке задачи указанных краевых условий па торцах совместно с условием отсутствия нагрузок на боковой поверхности стержня недостаточно для выделения единственного решения уравнений движения. К ним должно быть еще добавлено краевое условие на напряжения в торцах стержня. При формулировке этой же задачи с использованием принципа виртуальных мощностей не возникает необходимости в нахождении соответствующего условия на напряжения.  [c.13]

Главы V и VI посвящены кручению цилиндрических и призматических стержней, а также кручению стержней переменного диаметра и секторов кругового кольца. Исследованы основные уравнения пластического равновесия и даны методы построения полей касательных напряжений и осевых смещений в пластических зонах.  [c.4]

Выбор отображаюш 1х функций при решении задачи о кручении полых призматических стержней. Сб. научя. тр. Ереванок, политехи, ин-та, 1958, № 14, стр. 13—19.  [c.676]

Отсюда /jjp < /р. Равенство справедливо только для круга или кольцевого сечения. Таким образом, из всех сплошных призматических стержней, имеющих одинаковый полярный момент инерции, стержень 1фугового сечения имеет наибольшую жесткость при кручении, а из всех полых стержней при условии равенства /р наибольшую жесткость при кручении имеет стержень кольцевого поперечного сечения.  [c.27]

Следующий раздел книги Клебш посвящает задаче Сен-Ве-нана. Он опускает соображения физического характера, введенные Сен-Венаном при использовании им здесь полуобратного метода, и ставит проблему в чисто математической формулировке найти силы, которые должны быть приложены к торцам призматического бруса, если объемные силы отсутствуют, по боковой поверхности бруса не приложено никаких сил, но между продольными волокнами действуют лишь касательные напряжения в осевом направлении. Таким путем Клебш получает возможность задачи осевого растяжения, кручения и изгиба рассматривать и решать как единую задачу. Подобная трактовка вопроса принимает более сложный вид, чем у Сен-Венана, поскольку при этом подходе опускается физическая сторона явления и решение получается слишком абстрактным, чтобы заинтересовать инженера. Клебш проходит мимо тех многочисленных приложений, на которых останавливается Сен-Венан, демонстрирующий эффективность своего метода на балках различных поперечных сечений. В качестве примеров Клебш приводит случаи сплошного эллиптического бруса и полого бруса, поперечное сечение которого образовано двумя конфокальными эллипсами. Почти никакого практического интереса эти задачи не представляют, но Клебш обращается к ним для того, чтобы впервые ввести новый прием математической трактовки, а именно, использовать сопряженные функции в решении задачи Сен-Венана.  [c.310]

Как известно, задача о свободном кручении призматического стержня приводится к гармонической проб1леме, методы решения которой хорошо разработаны. Ранние работы по теории кручения стержней посвяш ены решению этой задачи в замкнутом виде или при помош и тригонометрических рядов к ним относятся статьи Б. Г. Галеркина, в которых исследовано кручение призмы с сечением в виде равнобедренного прямоугольного треугольника (1919) и призм параболического поперечного сечения (1924) ряд задач о кручении сечений, ограниченных алгебраическими кривыми, решен в работах Д. Ю. Панова (1935, 1937) и Д. Л. Гавры (1939) позднее кручением параболических призм занимался В, И. Блох (1959). Влияние радиальной трещины при кручении сплошного и полого валов изучено в статьях А. Ш. Локшина (1928) и В. Н. Лыскова (1930). Различным методам решения задачи теории кручения, включая и экспериментальные методы, посвящена монография А. Н. Динника, вышедшая в 1938 г-  [c.25]


Кручение (и изгиб) призматических стержней с полым прямоугольным сечением изучил в 1950 г. Б. Л. Абрамян в другой статье им исследован случай круглого вала с продольными полостями (1959) в работе Б. Л. Абрамяна и А. А. Баблояна (1960) исследовано кручение круглого стержня с продольными выточками или зубцами, имеющего центральную круглую полость. Тем же методом вспомогательных функций и сведением к бесконечным системам Н. О. Гулканян (1960) изучила кручение прямоугольной призмы с двумя симметричными прямоугольными полостями. В. С. Тоноян  [c.29]

Действие усилий, распределенных вдоль боковой поверхности круглого вала, приводящее к его закручиванию, рассмотрели Н. В. Зволинский и П. М. Риз (1939), которые изучили равномерное и линейное распределение нагрузки. Более общий случай призматического стержня рассмотрели Л. С. Гильман и С. С. Голушкевич (1943) и П. М. Риз (1940). В статье Л. С. Гильмана (1937) решена задача о кручении упругого кольца парами, равномерно распределенными вдоль оси его. Случай равномерно распределенных вдоль образующих цилиндра скручивающих касательных усилий изучался С. А. Банановым (1959). Кручение сплошного и полого круговых цилиндров осесимметрично распределенными поверхностными нагрузками рассмотрел при помощи рядов Фурье — Бесселя В. И. Блох (1954, 1956) к той же проблеме для сплошного цилиндра возвращался П. 3. Лившиц (1962). Задачу о кручении анизотропного стержня усилиями, распределенными вдоль его боковой поверхности, решил С. Г. Лехницкий (1961).  [c.31]

Знак равенства в соотношении (64) имеет место только для круга и кругового кольца, так как в этих случаях ф = = 0. Отсюда следует, что из всех сплошных призматических стержней с одинаковым полярным моментом инерции (Ур = onst), стержень кругового сечения имеет наибольшую жесткость при кручении, а из всех полых стержней при Ур = onst наибольшую жесткость при кручении имеет стержень кольцевого сечения.  [c.250]


Смотреть страницы где упоминается термин Кручение полых призматических тел : [c.28]    [c.29]    [c.292]    [c.552]    [c.250]    [c.26]   
Смотреть главы в:

Теория упругости  -> Кручение полых призматических тел



ПОИСК



К призматический - Кручение

Полый вал, кручение его

Стержни призматические полые — Жесткость при кручении 248, 250, 267 Кручение — Аналогия мембранная



© 2025 Mash-xxl.info Реклама на сайте