Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали перлитного класса

Стали перлитного класса характеризуются относительно малым содержанием легирующих элементов, мартенситного — более значительным и, наконец, аустенитного — высоким содержанием легирующих элементов.  [c.361]

Для легированных сталей перлитного класса (как и для углеродистых) кривая скорости охлаждения на воздухе будет пересекать область перлитного распада и будут получаться структуры — перлит, сорбит, тростит.  [c.361]


В настоящем разделе предпринята попытка сформулировать деформационно-силовой критерий зарождения усталостного разрушения применительно к ОЦК металлам, в частности к сталям перлитного класса, основываясь на некоторых физико-меха-нических представлениях о накоплении повреждений при усталости [74, 79, 85, 126]. Разрабатываемый подход позволит ответить на некоторые открытые вопросы в проблеме малоцикловой усталости материалов, в частности, касающиеся влияния на долговечность максимальных напряжений и нестационарности нагружения.  [c.136]

Стали перлитного класса содержат сравнительно небольшое количество легирующих элементов (не более 5—6%). После охлаждения на воздухе аустенит в этих сталях распадается при высоких температурах с образованием феррито-цементитной смеси (перлита, сорбита пли тростита). К этому классу принадлежит большинство конструкционных и инструментальных сталей.  [c.174]

Величина i(9) слабо зависит от содержания легирующих элементов в сталях перлитного класса, но возрастает с увеличением содержания углерода.  [c.476]

Для высокохромистых сталей ферритного класса значение п заметно выше, чем у сталей перлитного класса.  [c.476]

Для сталей перлитного класса, содержащих небольшое количество легирующих элементов, кривая скорости охлаждения на воздухе пересекает обе ветви С-кривых в области перлитного превращения (рис. 87, а). У сталей мартенситного класса, содержащих большее количество легирующих элементов, вследствие чего С-кривые сдвинуты вправо, а мартенситная точка — ближе к 0° С, кривая скорости охлаждения на воздухе не пересекает С-кривых (рис. 87, б) при температуре 20" С структура стали будет состоять из мартенсита. При значительном содержании легирующих элементов и углерода в стали С-кривые значительно сдвинуты вправо (рис. 87, в), а мартенситная точка находится ниже 0° С. Таким образом, при охлаждении на воздухе сталь сохраняет аустенитную структуру при температуре 20° С (рис. 87, в).  [c.120]

Эффективным направлением является использование в различных частях сварных конструкций разнородных материалов, наиболее полно отвечающих требованиям эксплуатации, применение двухслойного проката со специальными свойствами облицовочного слоя и других сочетаний. Примером может служить ротор газовой турбины. По ободу диск ротора подвергается действию высоких температур и относительно небольших усилий, а центральная часть работает в условиях невысоких температур и воздействия больших усилий Подобрать материал, одинаково хорошо работающий в этих условиях, очень трудно. Поэтому целесообразно изготовить сварной ротор центральную часть из высокопрочной стали перлитного класса, а обод диска из жаропрочной аустенитной (рис. 6.21).  [c.171]


Для парогенераторов горизонтального типа в качестве материала корпуса широко использовалась известная углеродистая конструкционная сталь 22К, обладающая хорошими технологическими свойствами. Она хорошо поддается ковке, прокатке, штамповке, хорошо сваривается. Опыт эксплуатации парогенераторов показал и ее хорошие эксплуатационные качества. При повышении единичной мощности парогенератора использование этой стали связано с существенным утолщением стенок корпуса. Для снижения массогабаритных характеристик парогенератора может оказаться целесообразным применение более прочных низколегированных сталей перлитного класса.  [c.251]

Подогреватели ПНД и ПВД находятся под действием питательной воды котлов и отборного пара паровых турбин, который, конденсируясь, образует дренажи с различным содержанием Игольной кислоты - диоксида углерода. Содержание его в различных частях трубчатой системы ПНД и ПВД может достигать в зависимости от степени конденсации греющего пара нескольких миллиграмм на 1 кг сконденсированного пара. Особенно велика концентрация его в дренажах ПНД и ПВД при недостаточных отсосах неконденсирующихся газов (СО2 и О2) из паровых полостей этих видов оборудования. В этих случаях наблюдается интенсивная коррозия, особенно ПВД, трубчатая система которых изготовлена из стали перлитного класса. Температура среды в зависимости от параметра пара объекта может достигать 300 °С. При этих условиях протекает коррозия с водородной деполяризацией, которая сопровождается наводораживанием металла. Коррозия носит в основном равномерный характер с образованием трещин и появлением хрупких разрущений [12].  [c.79]

Сталь перлитного класса  [c.311]

СТАЛЕЙ ПЕРЛИТНОГО КЛАССА  [c.174]

На рис. 88 показано, что с увеличением сопротивления срезу износостойкость различных сталей перлитного класса как в хрупкой, так и в вязкой области линейно возрастает.  [c.175]

Мартенситный класс. Стали этого класса по своим свойствам являются средними между низколегированными сталями перлитного класса и высоколегированными аустенитно-го. После термической обработки они обладают высокими механическими свойствами. Основной вид термической обработки, придающий оптимальные свойства,— закалка или нормализация с последующим высоким отпуском. Иногда используется смягчающая обработка, заключающаяся в отжиге. Режимы термической обработки сталей этого класса по ГОСТ 10500—63 и ГОСТ 5949—61 приведены в табл. 2.  [c.94]

TOB на разупрочнение стали связано с их распределением в феррите и карбидах. Известно, что изменение свойств феррита приводит к существенному изменению ползучести низколегированных сталей перлитного класса. В этих случаях молибден преимущественно входит в твердый раствор, значительно повышая энергию межатомных связей в решетке а — Fe. Легирование молибденом графитизированных сталей значительно задерживает разупрочнение феррита, и, кроме того, уже при незначительном содержании хрома и молибдена в сталях образуются сложные карбиды, которые, в свою очередь, снижают склонность сталей к ползучести.  [c.113]

Так, для конструкционных углеродистых и легированных сталей перлитного класса, для которых НВ >. 160, зависимость условного предела текучести oi твердости описывается уравнением Оо,г = 0,367 НВ. Для стали с НВ < 150 эта зависимость имеет вид Оо.а 0,2 НВ.  [c.308]

Таблица 13.11. Соотношение между твердостью по Бринеллю НВ и временным сопротивлением Ов для конструкционных углеродистых сталей перлитного класса при испытании шаром диаметром 2,6 мм по ГОСТ 22761—77 Таблица 13.11. Соотношение между твердостью по Бринеллю НВ и <a href="/info/1472">временным сопротивлением</a> Ов для <a href="/info/58790">конструкционных углеродистых сталей</a> перлитного класса при испытании шаром диаметром 2,6 мм по ГОСТ 22761—77
В сталях перлитного класса ниедение молибдена н небольшом ьоличестие увеличивает температуру рекристаллизации феррита и тем самым повыи ает жаропрочность. Аналогично, но слабее, действует хром (см, рис. 344).  [c.465]


Стали перлитного класса являются сравнительно малолегироваиными сталями, которые при 0,12%С содержат 0,5 пли 1% Сг и 0,3 или 0.5% Но. Прп-  [c.465]

Стали перлитного класса содержат до 0,16% С и молибдена до 0,7%, который увеличивает температуру рекристаплизации феррита и тем са.мым повышает жаропрочность. Аналогично, но слабее действует хром. Присадка ванадия измельчает зерно, а также повышает жаропрочность Обычный режим термической обработки - закалка в масле или нормализация при температурах 950.. 1030 с и отпуск при 720. 750 С (Ас1 = 760 С). Предельная рабочая температура 550.. 580 С. Структура сталей после охлаждения на воздухе перлит и карбиды МзС. Область применения сталей приведена в табл 13.  [c.102]

По показателям степени окисления между сталями перлитного и аустенитного класса находится ферритно-мартенситная сталь 12Х11В2МФ (среднее значение и=0,55). Относительно высокое значение п для этой стали в сравнении со сталями перлитного класса также подтверждает большое влияние взаимодействия хрома и хлоридов на процесс коррозии.  [c.140]

Исследование кинетики высокотемпературной коррозии сталей под влиянием летучей золы березовского угля Канско-Ачинского бассейна (табл. 4.6), как и под влиянием назаровского угля, проводилось с вырезанными из котельных труб плоскими шлифованными образцами. Образцы из стали 20 испытывались при температурах 450 и 500 °С, сталей перлитного класса 12ХШФ и 12Х2МФСР в интервале температур от 500 до 650 °С, а аустенитной стали 12Х18Н12Т — в промежутке 550—650 °С [134]. Максимальная продолжительность испытаний 4000 ч.  [c.158]

Кинетика высокотемпературной коррозии сталей под влиянием летучей золы лейпцигского бурового угля (табл. 4.6) исследовалась в показанной на рис. 3.6 лабораторной установке с вырезанными из котельных труб шлифованными плоскими образцами. Образцы из стали 20 испытывались в интервале температур 450—550 С, сталей перлитного класса 12ХШФ и 12Х2МФСР — в промежутке  [c.160]

Сталь ЭИ572Л аустенитного класса способна выдерживать длительную работу в течение 8000—10 000 час. при температуре 600° и напряжении порядка 24— 25 кгс/мм . Сталь ЭИ415Л, относящаяся к жаропрочным сталям перлитного класса, рассчитана на длительную работу при температуре 525° С и напряжении 27— 28 кгс/мм .  [c.263]

Фактических данных по коррозионному растрескиванию титановых сплавов в кислотах очень мало. В отличие от нейтральных растворов растрескивание в кислотах, как правило, происходит при заметной и даже высокой интенсивности общей коррозии, поэтому прежде всего необходимо определить возможность использования титановых сплавов из соображений допустимой общей коррозии. Следует, однако, отметить, что даже при больмшй-хкорости коррозии титана не снижается опасность коррозионного растрескивания в отличие от поведения сталей перлитного класса. Имеющиеся данные о коррозионном растрескивании титановых сплавов в кислых растворах относятся главным образом к слабым растворам (и частично — к растворам средней концентрации) соляной и  [c.48]

На трубопрокатных заводах ингибитор И-1-В почти полностью заменил ингибитор 4M. Однако и он мало эффективен при травлении труб котельных сталей марок 20,12Х1МФ, 15Х1М1Ф. Для травления этих сталей в настоящее время начинают применять ингибиторы С-5 и ХОСП-10, а для сталей перлитного класса — ингибитор КИ-1. Этот ингибитор эффективен также при травлении труб из углеродистых и низколегированных сталей. Предпочтение следует отдать травлению труб в растворах соляной кислоты. Однако переход на солянокислое травление задерживается из-за отсутствия установок для регенерации отработанных растворов и промывных вод, содержащих соляную кислоту, из-за необходимости замены старого травильного оборудования на новое, обеспечивающее интенсивное травление и выполнение санитарных норм травильных отделений. Для солянокислых сред уже испытаны ингибиторы И-1-В, катапин ВВП, ПКУ, БА-6.  [c.71]

Движущей силой этого типа нестабильности является межфаз-ная поверхностная энергия, которая снижается по мере уменьшения величины межфаз ной поверхности. Сфероидизация в сталях перлитного класса — один из наиболее известных примеров такой нестабильности. Грэхем -и Крафт [12] рассмотрели факторы, влияющие на высокотемпературную стабильность эвтектических композитных материалов. Они указали на существование особого кристаллографического соответствия между фазами, которое не меняется при огрублении эвтектической структуры. Они установили также, что, хотя механизм роста фаз состоит в растворении одной из них и в повторном осаждении ее на имеющихся зернах, процесс лимитируется скоростью диффузии, а не скоростью растворения. Для анализа иопользовались уравнения Томсона — Фрейндлиха, определяющие концентрацию элемента у поверхности волокна известного радиуса кривизны.  [c.90]

Большинство исследований влияния ввда напряженного состояния на закономерности ползучести выполнены на чистых металлах (алюминий, медь, свинец и др.). Из материалов энергетического машиностроения наиболее часто в качестве объекта исследования использовалась сталь аустенитного класса Х18Н10Т, иногда стали перлитного класса.  [c.163]

Одним из эффективных способов использования ресурса жаропрочности сталей перлитного класса может явиться предварительное упрочнение металла труб методом механико-термической обработки (ММТО), основанной на создании стабильной полигональной структуры и упрочнении ферритной составляющей.  [c.248]

В различных отраслях машиностроения широко применяют аустенитную сталь 110Г13Л, однако ее износостойкость в условиях ударно-абразивного изнашивания практически не изучена. Механические свойства сталей перлитного и аустенитного класса при отпуске изменяются по-разному. С повышением температуры -отпуска прочностные характеристики (ов, Оо,2 HR ) сталей перлитного класса снижаются, а показатели пластичности (йн, б, i 3) —увеличиваются.  [c.167]


Действительно, влияние механических свойств на износостойкость стали перлитного класса в хрупкой и вязкой областях разрушения различно в вязкой области разрушения с увеличением предела прочности износостойкость стали Д7ХФНШ повышается, максимальная износостойкость проявляется на границе хрупко-вязкого перехода.  [c.168]

Испытания стали 110Г13Л показывают, что износостойкость ее также существенно зависит от относительных удлинения и сужения в отличие от сталей перлитного класса Д7ХФНШ при всех значениях энергии удара (5 и 10 Дж) с увеличением относительных удлинения  [c.168]

В Институте машиноведения нами проведены испытания стали ТС при температуре 550 С в условиях мягкого и жесткого нагружения без выдержек и с выдержками 1 и 5 мин, а также испытания на ползучесть и длительную пластичность. Как показывает обработка экспериментальных данных, и для этой стали использование критериального уравнения в форме (1.2.8), (1.2.9) дает вполне удовлетворительные результаты (рис. 1.2.5, точки 1). Подобные данные получены в работе [23] на аналогичной ТС стали перлитного класса 15Х1М1Ф при 565 С и длительностях выдержки 5 и 50 мин (рис. 1.2.5, точки 2).  [c.32]

Применяемая в настоящее время для изготовления глубиннонасосных штанг легированная сталь перлитного класса 20Н2М не отвечает требованиям нефтедобывающей промышленности (большое число обрывов колонн, приводящих к длительным остановкам скважин). Это связано с тем, что в стали при термообработке возникают закалочные напряжения и деформации (закалка в воде), причем, как правило, растягивающие поверхностные остаточные напряжения,/что существенно снижает коррозионно-усталостную стойкость штанг. Кроме того, значительное содержание никеля в стали повышает ее стоимость.  [c.249]

Кроме классов сталей, предусмотренных ГОСТ 5632—72, существуют еще средне- и сложнолегированные теплостойкие стали перлитного класса. В табл. 9 приведены механические свойства и режимы термической обработки сталей этого класса по ГОСТ 10500—63.  [c.108]

Экранные трубы и пароперегреватели изготовляют преимущественно из стали перлитного класса марки 12Х1МФ, легированной хромом, молибденом и ванадием. При изготовлении элементов котла, работающих при повышенных температурах (примерно 500 °С), применяют аустенитную сталь 08Х18Н12Т.  [c.178]


Смотреть страницы где упоминается термин Стали перлитного класса : [c.466]    [c.288]    [c.363]    [c.123]    [c.476]    [c.134]    [c.147]    [c.154]    [c.38]    [c.250]    [c.168]    [c.100]    [c.69]   
Смотреть главы в:

Металлы и сплавы Справочник  -> Стали перлитного класса

Сварка и свариваемые материалы Том 1  -> Стали перлитного класса


Основы металловедения (1988) -- [ c.230 ]



ПОИСК



Класс стали аустенитный перлитный

Легированные стали перлитного и ферритного классов

Перлитные стали

СПРАВОЧНЫЕ КАРТЫ НА МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ ТУРБИНО- И МОТОРОСТРОЕНИЯ Нелегированные, низко- и среднелегированные стали перлитного класса

Стали аустенитного класса перлитного класса

Стали перлитного и ферритного классов

Теплоустойчивые стали перлитного класса, применяемые после закалки или нормализации с отпуском

Хромокремнистые и хромок рем немолибденовыс стали перлитного класса (сильхромы)

Хромомолибденовые и хромокремнистые стали перлитного класса



© 2025 Mash-xxl.info Реклама на сайте