Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термопара низких

Для выяснения влияния размера частиц на интенсивность теплоотдачи в [Л, 361] была использована полузамкнутая схема с участками охлаждения и нагрева восходящего потока четырех фракций песка и проса. Недостаток методики — измерение температур путем непосредственного размещения термопар в потоке газовзвеси, хотя условия опытов указывают на вероятность ф1=т 1. Вызывают также сомнения данные, полученные при весьма низких скоростях пневмотранспорта (например, 6 м/сек для частиц песка размером до 1,2 мм и проса). При этом отсутствует стабильный транспорт частиц, суще-  [c.220]


С момента появления первых термометров сопротивления и работы Каллендара по платиновым термометрам термометрия по сопротивлению претерпела существенные изменения. Наряду с классическими платиновыми термометрами сопротивления, применяемыми для измерений с большой точностью и во все возрастающем диапазоне температур, в настоящее время в промышленном масштабе используются проволочные элементы из платины, меди или никеля, а также печатные толстопленочные платиновые элементы. В диапазоне комнатных температур хорошо зарекомендовали себя точные и недорогие термисторы. В научных исследованиях при низких температурах используются термометры сопротивления с чувствительными элементами из сплава родия с железом, германия, углерода и стекло-углерода. Во многих случаях промышленных применений термометры сопротивления как основной инструмент контроля процесса вытесняют термопары. При температурах ниже 700 °С большинство промышленных термометров сопротивления сейчас более компактны и надежны, чем термопары. Кроме того, все более широкое применение микропроцессоров в составе приборов позволяет быстрее и эффективнее, чем было возможно прежде, использовать информацию, содержащуюся в сигнале от термометра.  [c.186]

В области низких температур трудности измерения термопарами иные, чем при высоких температурах. Химические реакции между проволоками термопары и чехлом в этом случае не происходят. Трудности обусловлены в основном малой чувствительностью низкотемпературного спая по сравнению со спаем при комнатной температуре.  [c.267]

В заключение отметим снова, что ухудшение характеристик термопары может происходить по двум причинам. Первая — загрязнение металлами, восстановленными из газовой фазы при разложении окислов, из которых изготовлены изоляторы и чехлы, и вторая — перенос родия в газовой фазе к электроду из чистой платины. Первый фактор подавляется при помещении термопары в окислительную атмосферу или (при необходимости работать с низкими парциальными давлениями кислорода) применением изоляторов из MgO. Второй фактор подавляется уменьшением давления кислорода или созданием препятствия на пути газовой фазы окиси родия.  [c.287]

Эти термопары имеют более высокую термо-э.д.с. по сравнению с термопарами, описанными выше. Однако ими нельзя пользоваться при столь же высоких температурах в связи с более низкой точкой плавления электродов и быстрой порчей при окислении. В промышленности чаще всего применяются стандартизованные термопары типов Е, I, К п Т, которые изготавливаются во множестве вариантов в зависимости от условий их применения. Подробные сведения о рекомендуемых диаметрах проволок, материалах изоляции и чехлов и других требованиях, связанных с особенностями эксплуатации, содержатся в национальных стандартах (см., например, [2]) приведенное ниже краткое описание свойств термопар из неблагородных металлов может быть дополнено, например, сведениями из работы [40] и других источников.  [c.287]


Эта комбинация сплавов также широко применяется в промышленности. Термопара типа К имеет высокую чувствительность и устойчива к окислению вплоть до 1260 °С, но непригодна для работы в восстановительной атмосфере. Она успешно применяется вплоть до 4 К и так же, как и тип Е, отличается низкой теплопроводностью обоих электродов. Главное преимущество термопары типа К по сравнению с другими термопарами из неблагородных металлов состоит в значительно лучшей стойкости к окислению при высоких температурах. Однако уже в слабо восстановительной атмосфере на поверхности положительного электрода образуется зеленая окись хрома, что сопровождается заметным изменением термо-э.д.с. Этот эффект сильнее всего проявляется при температурах от 800 до 1050 °С. Термопара типа К. также очень чувствительна к следам серы и углерода в атмосфере.  [c.288]

Термопары для низких температур  [c.292]

Выбор материала для измерения низких температур термопарами оказывается сложнее, чем для случая высоких температур [37]. Возрастающая роль фононов и механизмов их рас-  [c.292]

Методы калориметрии применяются при исследовании парожидкостных потоков и основаны на измерении количества теплоты, необходимой для превращения смеси в пар или жидкость. На рис. 12.1 приведена схема калориметра ЦКТИ, который использовался для определения влажности пара в проточной части турбины низкого давления. Влажный пар отсасывается через заборное устройство, высушивается в первом нагревателе и перегревается во втором. Температура пара перед нагревателями и после них измеряется термопарами. Количество теплоты, отдаваемой первым и вторым нагревателями,  [c.240]

Датчики для измерения температуры. Для измерения температуры на вращающихся объектах используют термопары, термометры сопротивления, термочувствительные элементы из полупроводниковых объемных сопротивлений, которые называют термисторами. Эти датчики удовлетворяют в основном перечисленным выше требованиям. Для локальных измерений температуры лучше подходят термопары, так как термометры сопротивления имеют наибольший линейный размер—10 мм и более. Однако в области низкой (криогенной) температуры чувствительность термопар существенно уменьшается, что при необходимости передачи информации через токосъемник снижает точность измерения температуры, а иногда делает эти измерения вообще невозможными.  [c.313]

Абсолютная термо-ЭДС металла при низкой температуре может быть измерена, если составить термопару из металла и сверхпроводника, так как дифференциальная термо-ЭДС в этом случае создается только ее нормальной ветвью.  [c.560]

В поверхность трубы заделаны горячие спаи 12 термопар ТХК, свободные концы которых выведены на разъем. Труба нагревается током низкого напряжения.  [c.139]

Трубка, электрическое сопротивление которой i = 0,04 Ом, нагревается током низкого напряжения. Температура поверхности трубки измеряется термопарой ТХА, горячий спай которой заделан в ее поверхность. Внутренний объем трубки от попадания в нее воды изолирован заглушками, изготовленными из теплоизоляционного материала.  [c.173]

Характеристика такой термопары медь-константан приведена на рис.2.13. Как видно, эта термопара успешно применяется и при низких температурах вплоть до точки кипения водорода. Для диапазона температур -  [c.36]

Хромель-копелевая термопара. Один из электродов этой термопары изготовлен из хромеля, а другой — из копеля (56% Си+44% iNi). Термопара применяется для измерения температур от —50 до- 600°С, а кратковременно — до 800 °С. Хромель-копелевая термопара развивает наибольшую ЭДС из всех здесь перечисленных термопар. Более низкий температурный предел объясняется наличием в ко-пеле меди, которая при высоких температурах окисляется.  [c.87]

Приборы этого типа широко используют для измерения низких температур (20—100 °С). Приемниками излучения служат термопары или боло-  [c.132]

Описаны тонкослойные покрытия из органосиликатных материалов для изоляции термоэлектродных проводов малого диаметра из хромоникелевых сплавов, платины и ее сплавов [2 3, с. 16—18, 54—64]. Из-за низких механических свойств эта изоляция не получила широкого распространения. Такие провода могут работать только в сборке, например при помещении в капилляры термопар.  [c.237]


Для измерения твердости при низких температурах до 77 К на столике прибора устанавливают ванночку и образец помещают непосредственно в охлаждающую жидкость. Наконечник индентора также опускают в охлаждающую жидкость. Температуру образца измеряют с помощью термопар (хромель — алюмель, медь — константан).  [c.49]

После изготовления сферические образцы отжигали и с помощью ацетона очиш,али от окалины. Цилиндрические образцы из стали 45 подвергали термообработке по сериям 1—закалка (820° С—вода) 2 — закалка, низкий отпуск 3 — закалка, средний отпуск 4 — закалка, высокий отпуск. Затем к ним с двух сторон точечной сваркой приваривали хромель-копелевые термо-электроды. Таким образом, получали хромель-копеле-вую термопару со спаем из стали 45.  [c.132]

Установка ИМАШ-5С-65 является первой отечественной серийной установкой для высокотемпературной металлографии, производство которой в 1965 г. было освоено Фрунзенским заводом контрольно-измерительных приборов. Эта установка предназначена для прямого наблюдения, фотографирования и киносъемки микроструктуры металлических образцов при нагреве их до 1500° С (но не выше 0,8 температуры плавления изучаемого материала) и при различных режимах растяжения в вакууме и защитных газовых средах. Исследованию подвергается плоский образец с рабочим сечением 3X3 мм и длиной рабочей части 46 мм. Нагревают образец, пропуская через него электрический ток промышленной частоты и низкого напряжения. Для измерения температуры используют платинородий-платиновые проволочные термопары. Точность измерения и регулирования температуры составляет 0,5%.  [c.115]

Нагрев образца. Образец нагревается электрическим током промышленной частоты и низкого напряжения, подводимым от силового однофазного трансформатора через герметизированные в корпусе водоохлаждаемые электроды и гибкие медные шины, соединенные с захватами 12 и 13 из жаропрочного сплава. Для измерения температуры в различных зонах образца служат три платинородий-платиновые термопары из проволоки диаметром 0,3 мм (на рис. 58, а условно показана одна термопара 14), введенные в вакуумную камеру через герметизирующее уплотнение 15. Спаи термопар при помощи точечной электросварки прикрепляются к боковой поверхности в средней части образца.  [c.118]

Контроль и регулирование температуры исследуемого материала производится при помощи термопар платина-платинородиевой для высоких температур и хромель-копелевой для низких. На рис. 111 показана одна термопара 18, спай которой 19 прикреплен к средней части образца. Воздух и газы из рабочей камеры откачиваются через патрубок 20, связанный с вакуумной системой, не изображенной на схеме. Остаточное давление измеряют через патрубок 21, соединенный с вакуумметром.  [c.195]

Гелий служит для передачи тепла от стенок камеры, где установлен нагреватель, к ячейкам с образцами. После того как установилась заданная низкая температура (обычно 77 или 20 К), согласно программе, введенной в компьютер, начинается линейное повышение температуры. Компьютер оценивает температуру эталона в сравнении с запрограммированной и в зависимости от величины этой разницы меняется напряжение, подаваемое на нагреватель. Т. э. д. с. простой и дифференциальных термопар измеряется через определенные промежутки времени чувствительным вольтметром. Эти данные вводятся в память компьютера для последующей обработки. Необходимость компьютера очевидна ЭВМ позволяет снять 7280 показаний в интервале 20—300 К через 0,5 К от тринадцати термопар. При скорости нагрева 1 К/мин замеры обычно проводили через 0,5 или 1 К.  [c.390]

ДОСТИЖЕНИЯ В ОБЛАСТИ ИЗМЕРЕНИЯ НИЗКИХ ТЕМПЕРАТУР С ПОМОЩЬЮ ТЕРМОПАР  [c.392]

Быстрое развитие низкотемпературной техники за последние 20 лет вызвало необходимость создания стандартных таблиц для тарировки термопар при низких температурах. Недавно законченная работа  [c.392]

Малые добавки переходных металлов повышают т. э. д. с. золота при очень низких температурах [1]. В последние годы сплавы золота с разным содержанием железа использовались в ряде лабораторий в качестве отрицательного спая термопар. Эти сплавы превосходят применявшиеся ранее сплавы золота с кобальтом они обладают большей т. э. д. с. при низких температурах и в отличие от сплавов золота с кобальтом представляют собой стабильный твердый раствор поэтому их показания не меняются во времени и после нагрева при 100 °С. В качестве положительного спая используют медь, серебро или хромель. Как правило, рекомендуют хромель ввиду его высокой положительной т. э. д. с. в верхнем температурном интервале, где отрицательная т. э. д. с. сплава Аи—Fe уже не столь велика. Такая комбинация обеспечивает достаточно высокую чувствительность, термопара пригодна для использования в температурном интервале 4—300 К. Дополнительным преимуществом хромеля по сравнению с медью и серебром [2] является сравнительно низкая теплопроводность. Теплопроводность материалов для термопар, Вт/(м-К) [2], приведена ниже  [c.393]

Наиболее часто в ядерных реакторах применяют термопары, обладающие преимуществами перед другими термодатчиками. Термопары имеют малые размеры термочувствительного элемента и относительно низкую восприимчивость к ионизирующим излучениям [67, 122]. Однако есть работы, указывающие на влияние высокой плотности потока нейтронов на термо-ЭДС. Поэтому при облучении в потоке больше нейтр./(см -с)  [c.92]


Средства контроля и автоматики. Фторопласты успешно используются в различных деталях и узлах средств контроля и автоматики. Так, в реакторах для защиты термопар, термометров сопротивления используются защитные чехлы из фторопласта-4, которые изготовляют прессованием из порошка или механической обработкой заготовки. Толщина стенки чехлов выполняется в пределах 0,8—1,5 мм. Следует учитывать, что низкая теплопроводность фторопласта увеличивает инерцию системы контроля.  [c.209]

Для измерения высоких температур было предложено много других термопар, но в настоящее время ни одна из них не получила широкого распространения.. Некоторьй исследователи использовали вольфрамо-молибденовые термопары, но термоэлектродвижущая сила этих термопар низка и ее зависимость от температуры еще достаточно точно не определена.  [c.99]

За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]

На рис. 6.11 показано, как ведут себя сплавы, дифференциальная термо-э.д.с. которых не падает до столь малых величин. В этих сплавах присутствует эффект Кондо, проявляющийся при рассеянии электронов проводимости магнитными моментами примеси, такой, как железо или кобальт (см. гл. 5, разд. 5.6). В интервале температур от 1 до 300 К можно получить довольно больщие отрицательные термо-э.д.с. Положительным электродом для такой термопары часто служит сплав с низкой теплопроводностью и малой термо-э.д.с., например N1—Сг, или Ад—0,3 % Ап. В настоящее время считается, что наилучшей примесью для получения хорошей стабильности отрицательного электрода термопары является железо. Сплавы с кобальтом, как оказалось, претерпевают при комнатной температуре структурные превращения, вызывающие изменения термо-э.д.с. Содержание железа обычно выбирают в пределах от 0,02 до  [c.293]

В практике измерения температур в воздушной и нейтральной средах широкое распространение получили термопары, изготовленные из неблагородных металлов и их сплавов, вследствие их низкой стоимости и достаточно высокой чувствительности. Основным недостатком термопар из неблагородных металлов является то, что для их изготовления практически очень трудно получить термоэлектрически однородную проволоку, а следовательно, и обеспечить хорошую воспроизводимость стандартной градуировочной кривой.  [c.25]

При пропускании через нагреватель электрического тока промышленной частоты и низкого напряжения образец, помещаемый внутрь нагревателя, нагревается до 1200° С. Для измерения температуры образца служат две проволочные платинородий-платиновые термопары диаметром 0,3 мм (на рис. 80 условно показана одна термопара 12), введенные в вакуумную камеру через герметизирующее уплотнение. Выводы термопар подключаются к электронному автоматическому потенциометру 13 типа КСП-4, с помощьк> которого включается и выключается напряжёние, подводимое к первичной обмотке силового трансформатора, установленного в цепи нагрева образца.  [c.147]

Для преобразования энергии микрорадиоволн, воспринятой приемной антенной, в электрический сигнал сравнительно низкой частоты используют термопары, болометры, термисторы, кристаллические детекторы.  [c.133]

ASTM совместно с фирмами — изготовителями термопар в США) позволит составить стандартные таблицы для обычных термопар, предназначенных для измерения низких температур. Они будут хорошо стыковаться (при 0°С) с существующими стандартными таблицами для высоких температур. Тем самым каждый тип термопар но всем рабочем температурном интервале будет иметь единую тарировочную таблицу.  [c.393]


Смотреть страницы где упоминается термин Термопара низких : [c.288]    [c.290]    [c.293]    [c.247]    [c.16]    [c.112]    [c.291]    [c.110]    [c.11]    [c.110]    [c.397]    [c.398]    [c.79]    [c.196]    [c.196]   
Температура (1985) -- [ c.292 ]



ПОИСК



Спаркс Л. Л., Пауэл Р. Л., Холл В. Дж. Достижения в области измерения низких температур с помощью термопар

Термопара

Термопары для измерения низких температур



© 2025 Mash-xxl.info Реклама на сайте