Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Токосъемник

Токосъемники для контактного съема электрических сигналов 310  [c.310]

Рис. 16.1. Принципиальные схемы токосъемников  [c.311]

В щеточном токосъемнике (рис. 16.1, а) электрический сигнал передается от вращающегося вместе с валом кольца 1, соединенного электрическим проводом с датчиком, к щетке 2, которая через щеткодержатель 3 крепится к траверсе 4, выполненной из изоляционного материала. Щетка прижимается к кольцу пружиной 5, которая соединена с измерительным прибором с помощью прохода. В токосъемнике имеется как минимум две пары кольцо — щетка, но их число может доходить до нескольких десятков.  [c.311]


Из возможных конструктивных схем ртутных токосъемников наибольшее признание получил камерно-дисковый ртутный токосъемник, схема которого показана на рис. 16.1,6. Три шайбы 2, выполненные из изоляционного материала, стянуты болтами со стальными цилиндрическими проставками 3 и вместе с ними образуют две рабочие камеры 4, через центральную часть которых проходит вращающийся вал. На валу закреплены два диска 5, электроизолированные от вала и соединенные проводами 7 с датчиком. В камеры 4 заливают ртуть, которая во время работы токосъемника обеспечивает электрический контакт вращающихся дисков со стальными проставками 3, соединенными проводами с неподвижной измерительной системой. Камеры 6 v 1 служат для изоляции рабочих камер от корпуса.  [c.311]

Игольчатые, шариковые и роликовые токосъемники применяют редко.  [c.311]

Наиболее широкое распространение получили щеточные токосъемники, которые достаточно просты в эксплуатации, допускают съем сигналов с большого числа датчиков и высокую частоту вращения (до 330 Гц и выше). Вместе с тем щеточные токосъемники имеют существенные недостатки. Главные из них — возникновение .значительных паразитных ЭДС в контактной паре и так назы-  [c.311]

Для ртутных токосъемников характерны малые переходные сопротивления 0,001 Ом), для их привода необходимы небольшие мощности, однако при большой скорости вращения ртуть переходит во взвешенное состояние, что приводит к неустойчивости электрического контакта. Поэтому применение ртутных токосъемников обычно ограничено частотой вращения 50 Гц, хотя известны конструкции токосъемников, в которых частота вращения, достигала 583 Гц [3], но срок их надежной работы исчисляется несколькими десятками часов. Ртутные токосъемники имеют и другие недостатки после непродолжительного хранения происходит прихват дисков, сопровождающийся повреждением амальгамы, которой покрыты контактирующие поверхности. Это явление часто-выводит токосъемник из строя. Ядовитость паров ртути заставляет усложнять уплотняющие устройства и принимать специальные меры, гарантирующие безопасность обслуживающего персонала. Все это ограничивает применение таких токосъемников.  [c.312]

Датчики для измерения температуры. Для измерения температуры на вращающихся объектах используют термопары, термометры сопротивления, термочувствительные элементы из полупроводниковых объемных сопротивлений, которые называют термисторами. Эти датчики удовлетворяют в основном перечисленным выше требованиям. Для локальных измерений температуры лучше подходят термопары, так как термометры сопротивления имеют наибольший линейный размер—10 мм и более. Однако в области низкой (криогенной) температуры чувствительность термопар существенно уменьшается, что при необходимости передачи информации через токосъемник снижает точность измерения температуры, а иногда делает эти измерения вообще невозможными.  [c.313]


Существенными недостатками проволочных термометров сопротивления являются низкий температурный коэффициент сопротивления и малое удельное сопротивление металлических проводников. При передаче информации через контактные токосъемники, обладающие значительными переходными сопротивлениями, эти факторы снижают достоверность получаемой информации. Этот недостаток существенно уменьщается, а иногда и практически исключается при использовании в термометрах сопротивления полупроводниковых материалов, которые имеют большое удельное сопротивление и высокий температурный коэффициент сопротивления. Недостатком термистора является нелинейная температур-  [c.313]

Для уменьшения контактной ЭДС используют небольшие силы прижатия щеток (от 300 Па до 0,1—0,2 МПа) для уменьшения переходного сопротивления силу прижатия увеличивают до 0,5 МПа и более. Однако при большой силе прижатия увеличивается износ контактных поверхностей и уменьшается срок их службы. Для уменьшения износа в некоторых токосъемниках предусмотрена возможность вывода щеток из контакта и введение их в контакт с кольцами только в период измерения.  [c.317]

Замена продуваемого через токосъемник воздуха азотом улучшает характеристики контактных пар и позволяет увеличить допустимые скорости скольжения до 40 м/с или использовать в контактной паре менее качественные материалы.  [c.317]

Токосъемники относятся в настоящее время к нестандартным элементам измерительных систем, поэтому их конструкции весьма  [c.317]

Рис. 16.2. Конструктивная схема щеточного токосъемника Рис. 16.2. <a href="/info/441835">Конструктивная схема</a> щеточного токосъемника
Вал токосъемника установлен на двух шариковых подшипниках и с одной стороны (на рис. 16.2 справа) имеет посадочное место для соединения через муфту е валом вращающегося объекта, а с другой стороны расположена муфта 2 е клеммником, к элементам которого припаивают провода от датчиков электрических сигналов, расположенных на вращающемся объекте, и медные провода 3 от контактных колец 6. Медные контактные кольца отделены от вала изоляционными втулками. Медно-графитовые втулки 7 установлены на двух плоских основаниях и медными проводами соединены со штепсельным разъемом 1. Щетки прижимаются к кольцам с помощью изолированных от них поршеньков 5, которые подвергаются воздействию сжатого воздуха через эластичную диафрагму 4. Оптимальные усилия прижатия щеток достигаются при давлении воздуха в камерах 8, равном 30— 40 кПа.  [c.319]

Токосъемники со скользящими контактами вносят дополнительные погрешности в измерительную цепь. При использовании в качестве датчиков термометров сопротивления и тензодатчиков основные погрешности обусловлены переходным сопротивлением. При непосредственном измерении термопарных токов существенные погрешности вносят переходные сопротивления и контактная ЭДС, а при компенсационном методе измерения — только контактная ЭДС.  [c.319]

Значение определяется для конкретных условий работы токосъемника как среднеарифметическое его максимального и мини-  [c.319]

Марка токосъемника Число контактных колец Максимальная частота вращения, Гц Материал контактных колец  [c.320]

На рис. 16.3 показаны характеристики двух близких по конструктивному оформлению токосъемников, из которых один работает без температурной стабилизации зоны контакта (/), а второй — с температурной стабилизацией (2). Как видно из рисунка, температурная  [c.321]

Для учета погрешностей, вносимых в измерения контактной ЭДС, из последней выделяют переменную составляющую и на основе испытания токосъемника строят зависимости этой составляющей ЭДС от скорости скольжения и температурных условий в зоне контакта. Эти графики используют при оценке погрешности измерения, обусловленной контактной ЭДС.  [c.321]


При двухпроводной схеме соединения (через контакты к и измеренное сопротивление представляет собой сумму сопротивлений датчика д, переходного сопротивления Rh и сопротивлений соединяющих проводов (Г), га, г/ и г ). Сопротивление проводов обычно невелико, и им часто пренебрегают, а методика определения сопротивления была рассмотрена в предыдущем параграфе. Определение R дает основную погрешность при измерении сопротивления датчиков. Поэтому такая схема измерения пригодна только при достаточно больших сопротивлениях датчиков и достаточно малых переходных сопротивлениях токосъемников (ртутные и щеточные токосъемники).  [c.323]

При измерении ЭДС, генерируемой вращающимся датчиком (термопарой), помехи в измерительной системе связаны не только с контактной ЭДС, возникающей в месте соприкосновения щетки с кольцом (см. 16.3), но и с появлением термо-ЭДС в местах подсоединения проводов к кольцам токосъемников или в местах соединения удлинительных проводов с элементами измерительной системы. Для исключения термо-ЭДС в спаях проводов с контактными кольцами последние можно выполнить из тех же материалов, что и термопарные провода.  [c.323]

На рис. 16.5, а показана однопроводная схема для непосредственного измерения термо-ЭДС восьми термопар, размещенных на вращающемся объекте. Термоэлектрод а у всех термопар общий и подключен к одному из колец токосъемника, а каждый из электродов б подключен к отдельному кольцу. Свободный спай термо-  [c.323]

Передатчик давления с компенсационным принципом измерения выполняется с 4—10 измерительными элементами, измеряемое давление 1—1500 кПа, частота вращения до 167 Гц. Ресурс агрегата определяется токосъемником.  [c.327]

Для создания импульсов электрического тока, определяющих частоту вращения, можно использовать токосъемник, в котором одно из контактных колец делается разрезным. Отсутствующая часть кольца заменена электрическим изолятором, при контакте которого со щеткой ток прерывается.  [c.329]

Пакет прикладных программ 346 Паразитная ЭДС токосъемника 311, 316-Передаточные функции 138 Передатчики давления 324 Переходное сопротивление токосъемника 310, 316  [c.356]

Для подвода энергии к батону служили два излучателя КИ с рефлекторами, расположенные на расстоянии 100 мм от оси опор. Время стабилизации обжарки составляло 5...7 мин, скорость вращения батона составляла примерно 1 об/мин, поэтому не использовались специальные токосъемники, а гибкие коммутационные провода предварительно закручивались в спираль, которая раскручивалась в течение опыта.  [c.164]

Условия задания. Корпус водородно-кислородного топливного элемента (см. рис. 13.2) разделен двумя пористыми электродами (токосъемниками) натри части. В левую и правую полости поступают под давлением соответственно На и  [c.316]

Скользящие контакты используются в электрических генераторах, электродвигателях, в автотрансформаторах с регулировкой под нагрузкой, в потенциометрах и т. п. В электрических машинах применяют, главным образом, электроугольные щетки, в потенциометрах, переключателях и в, других элементах радиоаппаратуры — пружинные токосъемники из металлических сплавов.  [c.297]

Конструкция малых выключателей представляет собой термоэлемент, который опрокидывает токосъемник при перегреве током перегрузки магнит, ускоряющий процесс отключения и пару контактов. Контакты не должны свариваться при токах перегрузки. Кроме того, при токе короткого замыкания материал контакта не должен подвергаться эрозии. При прохождении через контакты постоянного тока необходимо создавать условия минимального перегрева контактов. Контакты должны быть дешевыми и легко прикрепляться, несмотря на большие их размеры. По своим служебным свойствам они должны превосходить другие материалы. В приборах с низкими номинальными токами (50 А) и ниже используются контакты, состоящие из 65% вольфрама и 35% серебра или 50% серебра и 50% молибдена (приблизительно с 50 об. % тугоплавкого металла они показаны на рис. 3). В выключателях с большими номиналами материалы контактов содержат больше серебра (до 65 об. %) для лучшего размыкания и улучшения свойств при повышении температуры.  [c.423]

На рис. 30.8 показан электрогидра влический биоточный манипулятор. От токосъемника / (накладных электродов, размещенных в браслете в с,б-ласти расположения мьшщ, управляющих кистью) биоэлектрический сигнал через усилитель 2 (имеющий автономные блоки питания 10) поступает в электрогидравлические золотники  [c.614]

Трубка микротелефониая Соединители монтажные (планка, колодка, гребенка) Приспособление контактное (например, токосъемник) Прибор полупроводниковый  [c.224]

Наиболее распространенным типом топливных элементов является элемент с ионообменной мембраной, примером которого является кислородноводородный элемент, изображенный на рис. 19.2. В этом элементе две газовые полости А и В (кислородная и водородная) разделены ионообменной мембраной, которая пропускает ионы водорода Н+, но не пропускает молекулы О2 и гидроксильные группы ОН . Между поверхностью мембраны и пористыми токосъемниками нанесен слой катализатора. Ионообменная мембрана служит квазитвердым электролитом. При кислотной мембране вода образуется на кислородной стороне, откуда она в процессе работы удаляется с помощью специального устройства. Слой катализатора образует собственно пористый электрод, на развитой внутренней поверхности которого и протекает электрохимическая (т. е. токообразующая) реакция  [c.594]

Электрические сигналы можно передать от вращающихся датчиков к неподвижным измерительным приборам контактным ге бесконтактным способами. В первом случае используют токосъемное устройство (токосъемник), обеспечивающее передачу электрического сигнала с вращающихся деталей на неподвижные. Во-втором случае электрический сигнал передается с помощью индукционных Или емкостных токосъемных устройств, а также радио-телемёТрическими методами.  [c.310]


При большой скорости вращения стабильность теплового ре жима контактной зоны, достигаемая продувкой подогретого воздуха, нарушается из-за беспорядочно изменяющегося во времени тепловыделения, обусловленного трением. Для тогО чтобы в этом случае обеспечить термостабилизацию подогретым воздухом, вводят воздушное охлаждение колец токосъемника.  [c.317]

В табл. 16.1 дана техническая характеристика шести токосъемников [2], в том числе одного ртутного. Более подробная характеристика токосъемников ИТТФ АН УССР приведена в [7].  [c.319]

При наиболее часто используемой двухпроводной системе измерения число обслуживаемых датчиков в 2 раза меньше числа контактных колец. Поэтому число токосъемных пар часто оказывается меньше числа датчиков. Для увеличения числа датчиков, с которых можно передать информацию на неподвижные приборы в течение одного эксперимента, возможны два пути можно последовательно установить несколько токосъемников или использовать один токосъемник совместно с тококоммутатором, который имеет п позиций и соответственно в п раз увеличивает число датчиков, обслуживаемых токосъемником.  [c.319]

Измерительная система состоит из датчиков, токосъемника и тококоммутатора, усилителей, измерительной и регистрирующей аппаратуры, источников питания (для тензодатчиков, датчиков давления и термометров сопротивления), клеммников и коммутирующих проводов. Входящие в электрическую схему элементы и ее структура зависят от вида датчиков, токосъемного устройства и требований к точности измерения, от которого зависят вид измеряющей аппаратуры и схема ее подсоединения.  [c.321]

Термометрическое тело 171 Термопара 173, 174, 175 Термоприемник 178, 179 Токосъемник 310, 311, 315 Точность эксперимента 36 Трубка Престона 207 Турбулентность изотропная 257 однородная 257 пр11стениая 257 свободная. 257  [c.357]

Поскольку в этой установке тепломеры располагались на вращающейся детали (скорость вращения до 500 об/мин), показания датчиков дублировались. Для этого возле каждого датчика в диск зачеканено по две термопары на обеих поверхностях диска, что позволяло измерять температурный перепад на гранях диска, пропорциональный локальному тепловому потоку. Чтобы повысить точность измерения, на одну пару колец токосъемника термопары были включены дифференциально по однопроводной схеме, с использованием в качестве промежуточного. термоэлектрода материала стенки диска. Градуировка этого устройства показала, что в достаточно широком диапазоне сохраняется линейная связь между тепловым потоком и термо-э. д. с.  [c.109]


Смотреть страницы где упоминается термин Токосъемник : [c.205]    [c.311]    [c.311]    [c.312]    [c.315]    [c.316]    [c.319]    [c.324]    [c.570]    [c.42]    [c.260]   
Теория и техника теплофизического эксперимента (1985) -- [ c.310 , c.311 , c.315 ]



ПОИСК



Кольцевые токосъемники

Контактные токосъемники

Паразитная ЭДС токосъемника

Переходное сопротивление токосъемника



© 2025 Mash-xxl.info Реклама на сайте