Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрамит

Ввиду химической активности углекислого газа по отношению к нагретому вольфраму (окисление и разрушение вольфрама) для дуговой сварки в углекислом газе используют плавящиеся электроды или неплавящиеся (угольные или графитовые).  [c.120]

В сварочных установках катоды обычно изготовляют из тугоплавких металлов (тантала, вольфрама) или из гексаборида лаи-  [c.159]

Окись вольфрама в порошке — 0,80  [c.191]

Температура плавления — особенно важная константа свойств металла. Она колеблется для различных металлов в весьма широких пределах — от минус 38,9 С, для ртути — самого легкоплавкого металла, находящегося при комнатной температуре в жидком состоянии, до 3410°С для самого тугоплавкого металла — вольфрама.  [c.42]


Если рассмотреть, как влияют растворенные в железе элементы на прочность (которое следует ожидать в соответствии с изменением параметра решетки, рис. 83,а), то никель, хром и марганец упрочняют железо слабо (возможное изменение структуры при этом не рассматривается), а вольфрам, молибден и кремний сильно, причем кремний, сжимающий решетку, упрочняет сильнее вольфрама и молибдена, расширяющих решетку железа.  [c.102]

Почему же в чистом железе, а также в железе, легированном вольфрамом, молибденом и другими элементами, не получается структура игольчатого феррита  [c.352]

Применение чистых сталей по фосфору в первую очередь, а также по примесям внедрения (кислорода, азота, водорода) и цветным металлам (олова и др.) еще более эффективное средство, чем дополнительное легирование молибденом или вольфрамом для устранения склонности к отпускной хрупкости второго рода.  [c.376]

В группу III входят высокотвердые стали, легированные вольфрамом, из которых сталь ХВ5 называется алмазной. Из-за худшей прокаливаемости но сравнению со сталями групп I и II эти стали можно отнести и к категории сталей пониженной прокаливаемости, рассмотренных в предыдущем параграфе.  [c.416]

Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды.  [c.421]

В стали PI8 (обозначается иногда 18—4—1 цифры показывают содержание вольфрама, хрома, ванадия) присутствует один карбид — МбС и поэтому процессы превращений в ней можно рассмотреть по псевдобинарно-му разрезу Fe — Me ,  [c.423]

Из этой диаграммы видно, что закалка с относительно низкой температуры, например 1100°С, дает малую степень насыщения аустенита вольфрамом (ниже 3%).  [c.425]

Присадка вольфрама, молибдена, ванадия в стали с 12% Сг повышает жаропрочность, но до известного предела, так как при более высоком содержании этих элементов сталь становится полуферритной, в которой превращение a Y будет протекать не полностью, а это может отрицательно повлиять на свойства.  [c.466]

Дальнейшее повышение жаропрочности достигается введением элементов, упрочняющих твердый раствор,— кобальта, молибдена, вольфрама (сплавы нимоник 90 и 100).  [c.477]

Особо сильное влияние оказывают элементы — неметаллы с малым атомным радиусом и образующие с молибденом, вольфрамом, ниобием, танталом и др. твердые растворы внедрения, имеющие к тому же существенно изменяющуюся растворимость по температуре. Это приводит к выделению соответствующих  [c.523]

Влияние указанных примесей, находяш,ихся в твердом растворе, на прочностные характеристики молибдена и вольфрама мало заметно, вследствие их малой растворимости.  [c.527]


Порог хладноломкости у деформированного молибдена (вольфрама) лел<ит ниже, чем у рекристаллизованного (под-  [c.527]

Возможность упрочнения с помощью легирования твердого раствора для ниобиевых и танталовых сплавов значительна, тогда как растворимость большинства элементов в молибдене и вольфраме невелика и существенно повысить жаропрочность этим способом нельзя. Для указанных металлов используют дисперсионное упрочнение.  [c.529]

Ниобий и тантал обычно легируют в больших количествах молибденом, титаном, вольфрамом и другими преимущественно тугоплавкими металлами. Молибден легируют вольфрамом и в небольших количествах титаном и цирконием, которые являются более сильными карбидообразователями, чем молибден (вольфрам), и образуют вторичную карбидную фазу с малым количеством вводимого углерода (сотые доли процента). Эта фаза при выделении сильно упрочняет сплав.  [c.529]

Таблица 99 Жаропрочные свойства сплавов на основе вольфрама Таблица 99 <a href="/info/537100">Жаропрочные свойства</a> сплавов на основе вольфрама
В ниобии и тантале технической чистоты примеси внедрения при обычном их содержании находятся в растворе, а в молибдене и вольфраме (вследствие малой растворимости) — в виде дисперсных выключений — карбидов, нитридов, оксидов, располагающихся по границам зерен или в приграничных объемах. Это способствует хрупкому разрушению, и порог хрупкости у молибдена и вольфрама резко сдвигается в область более высоких температур.  [c.532]

Поскольку хрупкое разрушение связано прежде всего с наличием примесей внедрения на границах зерен, то большое значение имеет протяженность границ зерен, т. е. величина зерна. На рис. 393 приведены данные, показывающие, что с уменьшением величины зерна порог хладноломкости ниобия, молибдена, вольфрама снижается.  [c.532]

Сг) при их дополнительном легировании молибденом, вольфрамом, ниобием, ванадием, а иногда и никелем обладают повытеипым сопротивлением ползучести при работе под напря-жепнем при повышенных температурах. Их используют как жаропрочные применительно к температурам эксплуатации до 600 С.  [c.260]

Жаропрочные стали и сплавы обладают высокими механическими свойствами при повышенных температурах и способностью сохранять их в данных условиях в течение длительного времени. Для придания отих свойств сталям н сплавам их обычно легируют элементами-упрочнителями, молибденом и вольфрамом (до 7% каждого). Важной легирующей присадкой, вводимой в пекоторые стали п сплавы, является бор. В ряде случаев к этим металлам предъявляется требование и высокой жаростойкости.  [c.281]

Увеличение содержания хрома в аустенитных сталях ухудшает их штампуемость, а добавки ниобия и титана улучшают пластические свойства сталей как ферритного, так и аустенитного классов. Введение молибдена до 2 Ж также повышает штампуемость, а введение вольфрама до 4 и ванадия до I на штампуемость влияния не оказывает. Добавка до 1,4 кремния не влияет на штампуемость. Увеличение содержания углерода ухудшает шшотические своПства, поэтому он не должен превышать О,25...О,30 % 3.  [c.10]

Урановое или уран-плутониевое карбидное топливо по сравнению с окисным имеет существенно более высокую теплопроводность, более высокую плотность ядер деления и низкую замедляющую способность, однако химическая совместимость его с наиболее распространенными материалами оболочек, в частности, нержавеющими сталями и цирконием, гораздо хуже. Так, при температуре 1100° С сталь 0Х18Н9Т науглероживается, зона взаимодействия 100 мкм появляется всего через 6 суток, а с цирконием и карбидом циркония карбид урана образует непрерывный твердый раствор. Карбид урана взаимодействует при 1500 С с ванадием и образует жидкую фазу. Карбид урана хорошо совместим вплоть, до температур 1500—1600° С с карбидами тяжелых металлов (ниобия, молибдена, вольфрама, тантала), а также с пиролитическим углеродом и карбидом кремния. Карбидное топливо сравнительно хорошо удерживает продукты деления. Так, скорость утечки газообразных продуктов деления составляет менее 0,1% (скорость диффузии при температуре 1500°С).  [c.10]


Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов азотом, кислородом атомы железа — металлами марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цемеититом. Обычное обозначение легированного цементита М3С, где под буквой М подразумевают железо и другие металлы, замещающие атомы железа в решетке цементита.  [c.166]

Диффузионная металлизация — процесс диффузионного на-сьш1ения поверхностных слоев стали различными металлами. При насыщении хромом этот процесс называется хромированием, алюминием — алитированием, кремнием — силицирова-нием и т. д. Комбинированные процессы, заключающиеся в одновременном насыщении хромом и алюминием, или хромом и вольфрамом, называют хромоалитированием, хромовольфрами-рованием и т. д.  [c.338]

Порядок растворения карбидов в аустсиите определяется пх относительной устойчивостью, а степень перехода в раствор —их количеством. Так, при наличии в сплаве, например, трех карбидов — А/гСз, /Mg и МС — аустенит снач ла будет насыщаться карбидом /И7С3 (например, СГ7С3), а карбиды (вольфрама) и МС (ванадия) могут остаться в избытке.  [c.355]

Легирование вольфрамом значительно измельчает избыточную карбидную фазу и, следовательно, повышает твердость этих сталей. Стали этой группы можно закаливать и в воде, и в масле (в последнем случае — до определенного сечения). Закалка вводе дает более высокую твердость. Так, у стали В1 твердость после закалки в воде (н отпуска при 100—120°С) может достигать значений порядка HR 67—68, а у стали ХВ5 — до HR 69—70. При закалке же в масле (и таком же отпуске) получается твердость не выше HR 64—65. Такое различие объясняется те.м, что в первом случае получается меньше остаточного аустенита, а образовавшийся в самом начале мартенсит не успевает отпуститься при ускоренном охлаждении в интервале мартгн-ситно го П ревращения .  [c.416]

Все быстрорежущие стали обозначают буквой Р (рапид — скорость), цифры после этой буквы показывают содержание основного легирующего элемента — вольфрама, а для поль-фрамомолибденовых сталей и содержание молибдена. Прп высоком содержании ванадия среднее содержание его также отмечается в марочном обозначении цифрой после буквы Ф, а содержание кобальта буквой К и соответствующими цифрами. Хрома во всех сталях содержится около 4%, а углб рода—  [c.421]

В связи с дефицитом вольфрама в последнее время получили распространение вольфрамомолибденовые стали, которые даже вытеснили классическую сталь Р18. Из этих сталей преимущественное применение имеет сталь Р6М5.  [c.422]

Прочность, как н тиердость стали ЗХ2В8 и других сталей этого типа, мало изменяется до температуры отпуска 600—ббО С (как и у быстрорежущих сталей). Это указывает на высокую красностойкость сталей (рис. 331,а), обусловленную легированием вольфрамом и молибденом, образующими карбиды МвС, которые коагулируют лишь нри температурах выше бОО С, Поэтому сталь об. адает высокой 1трочностью и твердостью нри повышенных (до 600— 650°С) температурах (рис. 350,6).  [c.443]

Применяют различные виды наплавочных материалов, например порошковую смесь карбидов W2 - -W в эвтектической пропорции . Этой смесью заполняют железную трубку. Наплавление проводят с помощью расплавления железной трубки. Наплавленный слой состоит из железа с bkjuoi-ния-ми карбидов вольфрама. При высокой твердости и износостойкостн, превышающей остальные наплавочные материалы, этот наплавочный материал обладает весьма высокой хрупкостью. Предел прочности при изгибе составляет всего лишь 30—50 кгс/мм (при растяжении — близок к нулю).  [c.507]

Поскольку действие этих элементов на свойства сплава одинаково (ухудшается пластичность за счет подъема порога хладноломкости), то для получения пластичного металла необходимо, чтобы в хроме, моли бдене, вольфраме сумма -j-N + O составляла не более 10- % или не более 0,001%, что представляет собой труднейшую, практически не решенную еще задачу. В ванадии, ниобии и тантале сумма -bN-1-О может быть порядка 0,1 7о (вероятно, 0,05% ), что практически достижимо. Поэтому промышленные хром, молибден, вольфрам (и их сплавы) хрупки, порог хладноломкости лежит выше комнатной тем-пе]затуры, а ванадий, ниобий, тантал пластичны, порог хладноломкости этих металлов лежит ниже комнатной температуры (см. рис. 383).  [c.524]

В результате рассмотрения взаимодействия разных элементов с тугоплавкими металлами и прямые исследования по изучению влияния разных элементов (Е. М. Савицкий, Н. Н. Моргунова) позволяют сформулировать некоторые иоложения 1) легировать тугоплавкие металлы в количестве до нескольких процентов можно лишь тугоплавкими, причем для металлов VA группы (ванадий, ниобий, тантал) возможно более глубокое легирование, чем для металлов VIA группы (хрома, молибдена, вольфрама) 2) кислород является более вредным элементом, чем углерод, поэтому последний вводят в небольшом количестве (до 0,05—0,1%), для раскисления н жесткого легирования.  [c.524]

Растворение металлических элементов замещения в молибдене или других металлах в общем случае ухудшает пластичность и повышает порог хладноломкости. Небольшие добавки элементов замещения, играя роль рас-кислителей, могут снижать температуры перехода из пластичного состояния в хрупкое. Такими элементами являются, в частности, алюминий, церий, титан, цирконий, добавка которых в количестве 0,1—0,5% снижает температурный порог хрупкости. Значительное легирование примесями замещения всегда повышает порог хладноломкости. Исключение составляет рений (так называемый срениевый эффект ), который снижает порог хладноломкости молибдена, вольфрама и хрома (рис. 392). Чтобы получить ощутимое положительное влияние рения на свойства металла VI группы, необходимо вводить этот элемент в больших количествах (30—50%).  [c.532]

Порог хладноломкости тугоплавких металлов в рекристаллизованном состоянии, как правило, шачительно выше, чем в деформированном. Трудна- TII при сварке молибдена и вольфрама связаны именно с этим обстоятельством образующаяся при сварке зона литого и рекристаллизованного ме-  [c.533]

Для молибдена и вольфрама лучшими считаются термодиффузионные силицидные покрытия (MoSij, WSi2). Используются и покрытия-нихромом.  [c.534]


Смотреть страницы где упоминается термин Вольфрамит : [c.47]    [c.48]    [c.54]    [c.66]    [c.67]    [c.91]    [c.91]    [c.281]    [c.417]    [c.421]    [c.440]    [c.523]    [c.533]   
Производство ферросплавов (1985) -- [ c.255 ]

Конструкционные материалы Энциклопедия (1965) -- [ c.204 ]

Химия и радиоматериалы (1970) -- [ c.26 , c.390 ]

Техническая энциклопедия Т 12 (1941) -- [ c.0 ]



ПОИСК



Вольфрамит 535, XI 444 XIII

Вольфрамо-серебряные сплавы металлокерамические - Физико-механические свойств

Сплавы вольфрамо рениевые

Сплавы вольфрамо-молибденовые

Сплавы вольфрамо-танталовые

Твердые металлокерамические вольфрамо-кобальтовые сплавы состав, структура, технология производства, свойства

Твердые металлокерамические вольфрамо-кобальтовые сплавы состав, структура, технология производства, свойства состав, структура, технология производства, свойства

Твердые металлокерамические титано-вольфрамо-кобальтовые сплавы

Твердые растворы вольфрамо-кобальтовые (типа

Хромоникелемолибдено(вольфрамо)ванадиевая сталь — Ковка и штамповка — Температуры



© 2025 Mash-xxl.info Реклама на сайте