Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент атома магнитный орбитальны

Момент атома магнитный орбитальный 276  [c.571]

Результирующий магнитный момент атома. Зная орбитальные и спиновые магнитные моменты отдельных электронов и используя правила пространственного квантования, можно определить результирующий магнитный момент атома в целом Mj. При этом получается выражение, подобное (И,19)г  [c.290]

L — орбитальный момент внешних электронов S — спин внешних электронов / — полный момент количества движения электронов / — спин ядра F — полный момент количества движения атома. Магнитные моменты будем обозначать знаком (х с  [c.64]


Из курса атомной физики известно, что в результирующий магнитный момент свободного атома вносят вклад а) спиновые магнитные моменты электронов б) орбитальные магнитные моменты, связанные с движением электронов вокруг ядра. Спиновый и орбитальный магнитные моменты Ms и связаны с соответствующими механическими моментами Рд и гиромагнитными отношениями  [c.321]

Если магнитный момент атома обусловлен только спином электрона (орбитального момента нет), то число возможных ориентаций момента в магнитном поле уменьшается до двух (L=0 / = = S = V2). При этом (10.25) принимает более простой вид  [c.327]

Физическую природу магнитной анизотропии впервые установил Н. С. Акулов. В ферромагнитном кристалле имеются взаимодействия, которые ориентируют намагниченности вдоль определенных кристаллографических направлений (осей легкого намагничения). К этому приводит перекрытие электронных орбит спиновые моменты взаимодействуют с орбитальными из-за наличия спин-орбитальной связи, а орбитальные моменты, в свою очередь, взаимодействуют с кристаллической решеткой за счет существующих в ней электростатических полей и перекрытия волновых функций соседних атомов.  [c.347]

Диамагнитный момент атома Ар атом значительно меньше орбитального магнитного момента и спинового момента электрона, поэтому его присутствие обычно дает лишь малую поправку. Но в тех случаях, когда сумма всех орбитальных и спиновых моментов атомной оболочки равна нулю (инертные газы, ионы щелочных металлов), он выступает на первый план, так как диамагнитные моменты всех электронов имеют одно направление и суммируются (см. формулу (4.43)).  [c.145]

Причиной отмеченного выше мультиплетного расщепления термов щелочных элементов является взаимодействие орбитального и спинового магнитных моментов оптического электрона. Орбитальный магнитный момент ц , связанный с орбитальным движением электрона в атоме, равен  [c.57]

Орбитальный магнитный момент атома но классической теории. Электрон, движущийся по замкнутой орбите вокруг ядра, эквивалентен круговому току, магнитный момент которого  [c.92]

Отличие гиромагнитного отношения для спина от гиромагнитного отношения для орбитального движения имеет существенное значение при рассмотрении полного механического и магнитного моментов атома.  [c.210]


Векторное сложение орбитального и спинового механического и магнитного моментов атома  [c.218]

Расщепление уровней. Поскольку орбитальный магнитный момент и спиновый магнитный момент атома  [c.252]

Сильным магнитным полем считается такое поле, энергия взаимодействия с которым магнитного момента атома больше энергии спин-орбитального взаимодействия. В результате спин-орбитальная связь разрывается. Явление разрыва спин-орбитальной связи в сильном магнитном поле называется эффектом Пашена Бака. Линии излучения расщепляются на три линии с величиной расщепления, равной нормальному зеемановскому расщеплению, т. е. в результате эффекта Пашена Бака сложный эффект Зеемана превращается в простой.  [c.253]

МО направленным спином электрона. Орбитальный момент атома при L = = 1 может тремя способами ориентироваться относительно индукции магнитного поля (ш, = —1, О, 1). Это дает три значения энергии взаимодействия и приводит к расщеплению уровня Р на три подуровня (рис. 85). При каждой ориентировке орбитального магнитного момента спиновый магнитный момент может независимо ориентироваться двумя способами. Благодаря этому каждый из трех  [c.253]

Следует отметить, что изложенная нами теория относилась к атому или иону, обладающему лишь одним электроном, обращающимся вокруг ядра. Атомы же серебра и другие атомы, исследованные Штерном и Герлахом, представляют собою сложные системы, в которых вокруг ядра обращается много электронов. Тем не менее дальнейшее развитие теории показало, что соответствие с опытом не может быть получено на основании предположения, что магнитный момент атома определяется лишь орбитальным движением его электронов. Приходится допустить, что каждый электрон обладает своим собственным магнитным моментом (см. 9).  [c.38]

Полный магнитный момент атома у. складывается из суммарного орбитального магнитного момента и из суммарного магнитного момента электронов  [c.334]

Орбитальный магнитный момент атома. Атом любого элемента состоит из положительно заряженного ядра и электронной оболочки. Каждый электрон, движущийся вокруг ядра, создает замкнутый ток I = qv, где q — заряд электрона v — частота обращения его по орбите. Магнитный момент тока М. = IS = qvS, где S — площадь орбиты. Так как 5 = яг и v =  [c.289]

Классификация магнитных материалов. При суммировании орбитальных и спиновых магнитных моментов может произойти полная их компенсация и тогда результирующий магнитный момент атома будет равен нулю. Такая картина имеет место, в частности, у атомов и ионов с заполненными электронными оболочками. Если же такой компенсации не происходит, то атом будет обладать постоянным магнитным моментом В соответствии с этим магнитные свойства тел будут различными.  [c.290]

S -суммарные орбитальный и спиновый магнитные. моменты атома.  [c.22]

Магнитный момент М — векторная величина, характеризующая вещество как источник магнитного поля. Полный магнитный момент свободного атома равен геометрической сумме орбитальных и спиновых моментов всех его электронов. Упорядоченно ориентированные магнитные моменты атомов вещества создают макроскопический магнитный момент.  [c.97]

Диамагнетизм. Представляет свойство атомов. Вследствие наличия связанных электронов в диамагнетиках происходит компенсация орбитального и спинового моментов. Диамагнетизм проявляется в присутствии внешнего магнитного поля. При этом магнитный момент атомов направлен навстречу внешнему полю. цв=0.  [c.144]

Вследствие квантования механических моментов Ps и Рь квантованными оказываются и магнитные моменты. Квант магнитного момента равен магнетону Бора-, лв = ей/(2т)=9,27-10 А-м . Полному механическому моменту атома, определяемому как векторная сумма Pj=Pi,4-Ps, соответствует полный магнитный момент атома Mj, проекции которого на направление поля Н определяются выражением MjH = —wijg UB. Здесь т,- — магнитное квантовое число g — фактор расщепления Ланде, называемый также g-фактором. Для чисто спинового магнетизма g = 2, для чисто орбитального =1- У всех атомов и ионов, имеющих полностью заполненные электронные оболочки, результирующие спиновые и орбитальные магнитные моменты равны нулю. Вследствие этого равен нулю и полный магнитный момент. Атомы или ионы, обладающие недостроенньгаи внутренними оболочками (переходные и редкоземельные элементы), а также содержащие нечетное число электронов в валентной оболочке, имеют отличный от нуля резуль-21—221 321  [c.321]


Наряду со слабомагнитными телами существует ряд веществ, например ферромагнетики, для которых намагниченность не является линейной функцией поля. Для диамагнетиков характерно, что восприимчивость, как правило, не зависит от температуры, а для парамагнетиков она часто изменяется обратно пропорционально абсолютной температуре. Магнитные свойства атома обусловлены следующими факторами орбитальным движением электроно)в спиновыми эффектами магнетизмом атомного ядра Нейтроны и протоны, составляющие ядро, обладают собственными магнитными моментами. Однако величина магнитного момента нуклона из-за того, что его масса почти в 2000 раз больше массы электрона, пренебрежимо мала по сравнению с магнитным моментом электрона. Вычисление суммарных моментов атомов облегчается тем, что как суммарный орбитальный, так и суммарный спиновый момент полностью застроенных электр(зн-ных оболочек равен нулю. Поэтому следует принимать во внимание лишь электроны, занимающие незаполненные оболочки.  [c.143]

Магнитные диполн атомов н молекул определяются собственными магнитными МОментами (спинами) и орбитальным движением электронов. В случае, когда магнитный момент молекулы обусловлен спином ее электронов, имеется 2s+1 значений его проекции на направление иоля, где s — полуцелое или целое число  [c.264]

Из-за различия гиромагнитных отношений АЛЯ орбитального движения и спина полный магнитный момент атома, вообще говоря, не коллинварен полному механическому моменту.  [c.216]

Полный магнитный момент атома. Полный магнитный момент атома Цполн равен векторной сумме полного орбитального магнитного момента  [c.218]

Так как гиромагнитное отношение для спина в два раза больше, чем гиромагнитное отношение для магнитного момента, то полный магнитный момент атома не лежит на одной линии с полным механическим моментом. В изолированном атоме как изолированной механической системе полный механический момент постоянен. Следовательно, вектор сохраняет свое направление в пространстве, а векторы полного орбитального момента L, и полного спина пре-цессируют вокруг направления полного момента. Благодаря этому векторы полного орбитального и магнитного моментов также прецессиру-ют вокруг направления полного механического момента и вместе с ними прецессионное движение совершает и полный магнитный момент атома Цполн- Полный магнитный момент атома  [c.219]

При рассмотрении дублетной структуры термов щелочных металлов было показано, что она обусловливается взаимо,действием магнитного момента оптического электрона с его орбтальным движением, т.е. спин-орби1альным взаимодействием (см. 34). Мультиплетность определяется числом возможных взаимных ориентаций спина электрона и его орбитального момента, т.е. числом различных способов образования полного момента атома при данных значениях спина и орбитального момента атома. В случае щелочных металлов это число равно двум, поскольку спин равен Va-  [c.246]

Мультиплетность энергетических уровней. Все рассуждения 34 могут быть непосредственно обобщены на случай более сложных атомов. В случае (L-S)- связи все спины электронов связываются между собой и образуют полный спин атома, а все орбитальные моменты атомов связываются между собой и образуют полный орбитальный момент атома. Таким образом, полный спиновой магнитный момент атома взаимодействует с орбитальным движением всех электронов атома, описываемым полным орбтальным моментом атома, т.е. в атоме имеется спин-орби-тальное взаимодействие. Оно зависит от спинового и орбитального магнитного моментов и от их взаимной ориентировки. Число взаимных ориентировок было вычислено в 37  [c.246]

Когда атом помещен в магнитное поле, его полная энергия слагается из двух частей из внутренней энергии атома и из энергии взаимодействия магнитного момента атома с магнитным полем. Энергия взаимодействия определяется индукцией магнитного поля и ориентировкой и модулем магнитного момента. Если магнитное поле не очень велико, то спин-орби-тальное взаимодействие в атоме сильнее, чем взаимодействие орбитального магнитного момента и спинового магнитного момента в отдельности с внешним магнитным полем. При этом условии связь между спиновым и орбитальным моментами не разрывается, т. е. и в маг-  [c.249]

Слабым магнитным полем считается такое поле, энергия взаимодействий с которым орбитального магнитного момента и спинового магнитного момента меньше, чем энергия спин-орбитального вэаимодействия. Благодаря этому с магнитным полем взаимодействует полный магнитный момент атома как целое, а спин-орбитальная связь не разрывается. В этом случае наблюдается сложный (или аномальный ) эффект Зеемана. Если полный спин атома равен нулю, то в слабом поле наблюдается простой (или нормальный ) эффект Зеемана.  [c.251]

Сильное поле. Сложный эффект Зеемана наблюдается в слабом магнитном поле, когда энергия взаимодействия магнитного момента атома с магнитным полем меньше энергии спин-орбитального взаимодействия. Если индукция магнитного поля достаточно велика, то энергия взаимодействия магнитного момента с магнитным полем становится больше энергии спин-орбитального взаимодействия, благодаря чему связь между орби-гальным и спиновым моментами разрывается. Спиновый магнитный момент и орбитальный магнитный момент атома начинают самостоятельно взаимодействовать с магнитным полем, т. е. каждый из них самостоятельно прецессирует вокруг направления индукции магнитного поля (рис. 84). Явление разрыва спин-орби-тальной связи в сильном магнитном поле называется эффектом Пашена-Бака.  [c.252]


В качестве примера рассмотрим расщепление в сильном магнитном поле уровней S и Р атома натрия, которое для слабого поля и юбражено на рис. 83. Расщепление этих уровней в сильном магнитном поле показано на рис. 85. Прежде всего заметим, что из-за разрыва спин-орбитальной связи нельзя говорить о полном моменте атома. Благодаря этому уровень Рц2 уже не отличается от уровня поскольку оба они теперь характеризуются одинаково как уровни с одним и тем же значением L= 1 и незаниси-  [c.253]

Магнитные свойства и строение вещества. Как известно электрон обладает спиновым и орбитальным магнитными моментами. Геометрически складываясь моменты электронов создают результирующий магнитный момент атома М. Суммарный магнитный момент в единице объема, именуемый намагниченностью J, когда вещество не было намагничено и внешнее поле отсутствует, равняется нулю. Под воздействием магнитного иоля со средней напряженностью внутри тела, равной Н, намагниченность J = %Н, где х— магнитная восприимчивость. Намагниченность определяет величину магнитной индукции В = В + + %Н. Магнитные свойства вещества характеризует также относительная магнитная проницаемость х = 1 -10 гн м — магнитная постоянная вакуума. В зависимости от величины и знака магнитной восприимчивости вещества могут быть диамагнитные (Х<0), парамагнитные и ферромагнитные (х>>0). Рассмотрим две последние группы веществ. В парамагнитных веществах у атомов имеются магнитные моменты, однако иод влиянием теплового движения эти моменты располагаются статистически беспорядочно вдоль магнитного поля удается ориентировать лишь примерно одну десятитысячную процента всех спинов. В результате магнитная восприимчивость X мало отличается от нуля, а магнитная проницаемость парамагнитных материалов немногим больше единицы. К парамагнитным принадлежат некоторые переходные металлы, а также щелочные и щелочно-земельные металлы. Ферромагнитные материалы обладают весьма большой магнитной восприимчивостью, может достигать значений порядка 10 , после снятия поля сохраняется остаточная намагниченность. Ферромагнитные свойства при нагревании наблюдаются лишь до некоторой температуры 0, отвечающей точке Кюри — переходу нз ферромагнитного в парамагнитное состояние. Значение 0 для железа 769° С, для кобальта 1120° С, для никеля 358 С. При температурах Т G в отсутствие внешнего поля ферромагнетик состоит из микроскопических областей — доменов, самопроиз-  [c.226]

В электронной теории в разное время были созданы три модели атома модель Томсона, модель Нильса Бора и модель Гейзенберга— Шредингера. По модели Томсона электрон с зарядом —е движется внутри равномерно заполненного положительным зарядом шара, радиус которого равен а, а заряд +е. Из вычислений следует, что радиус положительного шара в этой модели примерно равен 10 см. Однако опыты Э. Резерфорда показали, что положительный заряд сосредоточен в объеме, радиус которого 10 —см. По модели атома Н. Бора электроны двилсутся по круговым орбитам, создавая орбитальный магнитный момент и орбитальный механический момент. Отношение магнитного момента к механическому называется гиромагнитным отношением, оно равно —ejUm. Кроме орбитального, электрон обладает собственным механическим и магнитным моментами, для которых гиромагнитное отношение равно —elm и совпадает со значениями, полученными в опытах ио магнетизму С. Барнетта, а также А. Эйнштейна и В. де Хааза. Магнитные свойства железа обусловлены собственным магнитным моментом.  [c.9]

Введением внутримолекулярного поля удалось объяснить широкий круг явлений, наблюдаемых в ферромагнетиках, однако природа самого поля и вопрос о том, какие магнитные моменты ато-люв — орбитальные или спиновые—ответственны за ферромагнетизм, оставались долгое время неясными. И только после тщательных опытов Эйнштейна и де Гааза, Барнета, Иоффе и Капицы было твердо доказано, что ферромагнетизм обусловлен спиновыми магнитными моментами атомов. Поэтому именно спиновые магнитные моменты электронов, не скомпенсированные в атомах, и являются элементарными носителями ферромагнетизма.  [c.293]

ВЕРОЯТНОСТЬ термодинамическая характеризуется чис-ло 1 способов, которыми может быть реализовано данное состояние системы ВЗАИМОДЕЙСТВИЕ [—воздействие тел или частиц друг на друга, приводящее к изменению их движения ближнего порядка — взаимодействие между соседними частицами, составляющими вещество гравитационное — взаимодействие между любыми телами, выражающееся в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними дальнего порядка — взаимодействие между далекими частицами, составляющими вещество звеньями полимерной молекулы при случайном сближении их в процессе теплового движения) обменное — специфическое взаимное влияние одинаковых частиц, входящих в состав квантовой системы, связанное со свойствами симметрии волновой функции системы относительно перестановки координат частиц, а также приводящих к согласованному движению частиц и изменению энергии системы пондемоторное токов — механическое взаимодействие электрических токов посредством создаваемых ими магнитных полей снин-орбитальное — взаимодействие частиц, входящих в состав квантовой системы, зависящее от велггчины и взаимной ориентации их орбитального и спинового моментов импульса, а также приводящих к тонкой структуре уровней энергии системы сннн-решеточ-ное — взаимодействие орбитального магнитного момента атома с кристаллическим полем спин-спиновое — взаимодействие частиц, входящих в состав квантовой системы, обусловленное наличием у частиц собственных магнитных моментов, а также приводящих к сверхтонкой структуре уровней энергии системы электромагнитное — взаимодействие частиц, обладающих электрическим зарядом или магнитным моментом, осуществляемое посредством электромагнитного поля]  [c.226]

МАГНИТОМЕХАНЙЧЕСКИЕ ЯВЛЕНИЯ (гиромагнитные явления) — группа явлений, обусловленных взаимосвязью магнитного момента микрочастиц (напр., электронов в атомах и ионах) с их собственным угловым (механич.) моментом (спиновым и орбитальным). Спину микрочастицы (электрона, протона, нейтрона и др.) соответствует определ, маге, момент. Напр., проекция магн. момента электрона на направление магн, поля Н равна (в системе СГС) = е =  [c.700]

К первой фуппе редкоземельных металлов (РЗМ) относят элементы с атомными номерами от 57 до 71 La,Се, Рг, Nd, Pm, Sm, Eu, Gd, Tb, E>y, Ho, Er, Tm, Yb, Lu. Элементы от La до Eu причисляют к легким, а от Gd до Lu - к тяже.лым редкоземельныл эле.ментам. РЗМ имеют электронную конфигурацию общего вида 4 "Магнитная" 4/-оболочка последовательно за-по.лняется с уве,тичением атомного номера РЗМ от 57 к=0) у La до 71 ( 14) у Lu. Расположенная в глубине атома незастроенная 4/-оболочка экранирована от влияния кристаллического поля и "зavIopaживaния" орбитального момента атома не происходит. Поэтому магнитный момент в атомах РЗМ определяется как спиновым, так и орбитальным магнитными моментами 4/ -электронов. Для легких РЗМ, 4/ч)болочка которых заполнена менее чем наполовину, орбитальный и спиновый магнитные моменты устанавливаются антипараллельно и полный момент атома J==Z,-5. У гадолиния (и=7) орбитальные моменты электронов скомпенсированы (/,=0) и соответственно J=S. Для тяжелых РЗМ, у которых 4/оболочка заполнена более че.м наполовину, орбитальный и спиновый магнитные моменты устанавливаются параллельно и полный. момент атома J=L+S.  [c.22]


Валентные электроны входят в состав s- и р-под-групп оболочки с максимальными значениями п. Они определяют химические и оптические свойства элемента. Если s- и р-нодгруппы заполнены электронами, то вещества химически инертны. При заполненных i-подгруппах компенсированы спиновые магнитные моменты электрона, а при заполнении р-, ... подгрупп компенсированы и орбитальные моменты. В этом случае магнитный момент атомов = 0. Такие вещества являются диамагнетиками. В атомах с незаполненными подгруппами О, что приводит к парамагнетизму.  [c.252]

Материалы в магнитном поле намагничиваются. Намагничивание связано с наличием у атомов (ионов) собственного магнитного поля, которое и определяет степень намагниченности материала. Магнитный момент атома является суммой векторов орбитальных и собственных (спиновых) моментов электронов. При наложении внешнего магнитного поля векторы ориентируются вдоль поля. Орбитальный момент при этом уменьшае гся, так как в атоме индуцируется добавочный момент, направленный против поля, — диамагнитный эффект. Наличие нескомпенси-рованных спинов электронов, наоборот, усиливает намагниченность атома — парамагнитный эффект. В твердых телах атомы сближены настолько, что происходит перекрытие энергетических зон электронов атомы обмениваются электронами и в результате преобладает тот или иной эффект.  [c.524]


Смотреть страницы где упоминается термин Момент атома магнитный орбитальны : [c.207]    [c.229]    [c.250]    [c.253]    [c.425]    [c.22]    [c.171]   
Справочное руководство по физике (0) -- [ c.276 ]



ПОИСК



МАГНИТНЫЙ И МЕХАНИЧЕСКИЙ МОМЕНТЫ АТОМА Орбитальный момент электрона

Мир атома

Момент магнитный

Момент магнитный атома

Орбитальный момент



© 2025 Mash-xxl.info Реклама на сайте