Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Запас при статических напряжениях

ЗАПАСЫ ПРОЧНОСТИ ПРИ СТАТИЧЕСКИХ НАПРЯЖЕНИЯХ  [c.32]

Запасы прочности при статических напряжениях  [c.33]

При расчете пружин или других элементов основания фундамента силу упругости нельзя рассматривать как статическую силу, так как речь идет о знакопеременном цикле напряжений и любой материал в этих условиях, как известно, обладает меньшей сопротивляемостью, чем при статических нагрузках. На основании проведенных до настоящего времени опытов можно приближенно считать, что вследствие явлений усталости материала выносливость его при колебаниях (вибропрочность) составляет только около Уз статической прочности. Соответственно этому для симметричных циклов загружений, т. е. для нагрузок, непрерывно изменяющихся в пределах между положительным и равновеликим отрицательным максимальными значениями, можно допускать только до 7з предельно допускаемого для статических нагрузок напряжения. Другими словами, запас прочности против знакопеременного напряжения должен быть равен тройной величине запаса при статическом приложении напряжения. Таким образом, с точки зрения сопротивления материала знакопеременное загружение эквивалентно статическому загружению силой, увеличенной в 3 раза. Следовательно, если силу упругости умножить на коэффициент усталости (J =3, то полученная величина  [c.12]


Аналогично проводят расчет и при сложном напряженном состоянии. При асимметричном цикле коэффициент запаса при переменных нагрузках определяется по формуле (21.17), в которой Па и Пх вычисляются соответственно по формулам (21.25) и (21.26). Запас прочности по статической несущей способности определяют по методике, изложенной в гл. 18. При этом прочность оценивается по наименьшему из запасов по усталости и по статической несущей способности.  [c.614]

Допускаемое напряжение при статической нагрузке есть отношение предельного напряжения (предел текучести—для пластичных, предел прочности—для хрупких материалов) к допускаемому коэффициенту запаса прочности s], которые каждая отрасль машиностроения вырабатывает на основании своего опыта эксплуатации деталей машин.  [c.11]

Если асимметрия цикла очень велика, то роль переменных напряжений при оценке прочности может оказаться несущественной и расчет следует проводить по предельному состоянию, как при статической нагрузке. В связи с этим наряду с запасом прочности по усталости [формулы (22.25), (22.26)] следует определять запас прочности и по несущей способности при статическом нагружении.  [c.678]

Усталость при плоском или при объемном напряженном состоянии общего вида экспериментально изучена недостаточно. Известно, однако, что теории статической прочности не могут быть непосредственно перенесены на прочность при переменных напряжениях (вибрационную прочность). Наиболее часто объемное напряженное состояние встречается при расчете прямых валов (длинных стержней), работающих одновременно на изгиб и на кручение. В этом частном случае принято находить коэффициент запаса для вала по формуле  [c.175]

Запас прочности по напряжениям при статической нагрузке  [c.27]

При статическом длительном нагружении допускаемые напряжения определяются из кривых длительной прочности и полной деформации ползучести. В зависимости от соотнощения пределов ползучести и пределов длительной прочности для определения допускаемых напряжений выбирается меньшая для заданного времени работы величина. При этом запас прочности по напряжениям (для длительной прочности) принимается л = 1,4 ч- 1,6.  [c.485]


При статическом длительном нагружении запасы прочности определяют из кривых длительной прочности и полной деформации ползучести как отношение предела длительной прочности к рабочему напряжению при расчете по разрушающим нагрузкам или как отношение условного предела ползучести к рабочему напряжению при расчете по предельным деформациям. За условный предел ползучести принимается напряжение, обеспечивающее допустимую скорость деформации или допустимую суммарную деформацию за определенный срок службы при заданной температуре.  [c.539]

При переходе современных турбин на высокие параметры пара н в особенности при повышении их единичной мощности условия работы лопаточного аппарата становятся все более тяжелыми. Между тем запас прочности, если учитывать только статические напряжения, для лопаток последних ступеней крупных турбин сравнительно мал. Если учесть сказанное, то, строго говоря, их действительный запас прочности неизвестен. Неудивительно поэтому, что имеют место аварии с рабочими лопатками.  [c.3]

Допускаемое напряжение при пайке может быть установлено в зависимости от значения разрушающего напряжения и коэффициента запаса прочности К при статических нагружениях рекомендуется принимать К — 2,5- -.- -3,0.  [c.302]

Если при назначении допускаемого напряжения учитываются только общие факторы, т. е. коэффициент запаса принимается равным одному лишь основному, то динамику и местные напряжения учитывают, когда это возможно, в величине действительного напряжения, умножая основное статическое напряжение на коэффициенты динамики и концентрации. Нетрудно убедиться, что в обоих случаях результаты будут одинаковыми.  [c.63]

При определении допускаемых напряжений [т] принимают коэффициент запаса s по отнощению к пределам прочности при сдвиге (см. табл. 8.5) равным s = 2,5...3 при статической нагрузке S = 4...5 при переменных нагрузках, а при наличии в спектре нагрузок существенных перегрузок (при вибрациях, ударных нагрузках и т. п.) запас принимают еще больше.  [c.179]

При статическом нагружении дефекты увеличивают опасность хрупкого разрушения. Как и в других случаях, наиболее опасны острые трещиноподобные дефекты трещины, непровары, подрезы. Опасность дефектов усиливается при пониженной температуре (особенно ниже -60 °С), при предварительном нагружении материала детали внешними или сварочными напряжениями, при повышенном содержании углерода и при увеличенном поглощении водорода. Когда материал соединения обладает большим запасом вязкости, основное влияние на прочность ока Зывает относительная величина дефекта. В ряде случаев (для сравнительно малонагруженных соединений из пластичных материалов) безопасное ослабление стыкового шва может достигать 30 %.  [c.340]

Допускаемые напряжения и коэффициенты запаса прочности. Допускаемые напряжения [о], МПа, при расчете сосудов и аппаратов, работающих при статических однократных нагрузках, определяют по формулам  [c.423]

В основу расчета долговечности при циклическом и длительном статическом нагружениях положен принцип суммирования повреждений, рассмотренный выше. Для определения местных деформаций используются результаты испытания материалов в условиях однородного напряженного состояния и их соответствующие аналитические интерпретации применительно к материалам циклически упрочняющимся, разупрочняющимся и стабилизирующимся в процессе циклического нагружения [29, 101, 117]. При этом пластические циклические и статические свойства определяются для зон концентрации с учетом их стесненности и кинетики в процессе нагружения. Расчет коэффициентов концентрации напряжений Кд и деформации К , производится на основе модифицированной зависимости Нейбера [29, 110, 118, 124]. Запасы прочности по напряжениям принимаются равным Пд = 2 и по числу циклов — = 10.  [c.252]


Расчет конструкций на прочность производится по допускаемым напряжениям [а], определяемым из условий прочности при статическом нагружении или долговечности при циклической нагрузке. При статическом нагружении допускаемое напряжение получается делением предельных для данного материала напряжений на коэффициент безопасности, иначе называемый коэффициентом запаса прочности п. Для пластичных материалов за предельное напряжение принимают предел текучести, для квазихрупких — временное сопротивление [а] = аод/ т или [а] = Ств/ в-  [c.623]

Зная методику определения величин запаса прочности как произведения трех частных коэффициентов, из формул (2) и (3) находим уточненные значения допускаемых напряжений при статическом нагружении для ранее приведенных двух случаев  [c.22]

Допускаемые напряжения при пайке могут быть определены делением разрушающих напряжений на коэффициент запаса прочности, который рекомендуют принимать при статическом нагруже-нии 2,5... 3.  [c.18]

При расчете допускаемых напряжений деталей, изготовленных из серого чугуна или цветных металлов, испытывающих десЬор-мации растяжения, запас прочности принимается по отношению к пределу прочности /г = 4ч-5 — при статическом напряжении п = 6-ь7 — при пульсирующем цикле напряжений п = 8- 10 — при симметричном цикле напряжений.  [c.251]

Допускаемое напряжение йри пайке может быть определено в зависимости от величины разрушающего напряжения и коэффициента запаса прочности К, который рекодзендуется брать равным 2,5—3,0 при статических напряжениях.  [c.91]

При статически напряжениях в качестве предельного напряжения обычно принимают предел прочтости Ов и запас прй ЧносТй определяют по формуле  [c.32]

При статических напряжениях в качестве предельного напря>. еиия обычно принимают предел прочности Ов и запас прочности определяют по формуле  [c.40]

Расчетные коэффициенты запаса прочнести и допускаемые напряжения существенно зависят от концентрации напряжений (см. стр. 318). При переменных напряжениях прочность деталей (их предел выносливости) при наличии концентрации напряжений сильно уменьшается. При статическом нагружении деталей из пластичных материалов концентрация напряжений практически не отражается на их прочности и потому не учитывается при расчетах.  [c.332]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторноч татическом режимах нагружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развитие в большом объеме материала пластических деформаций. Нормы расчета на прочность поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по такому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести щ = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке  [c.204]

Прежде чем сформулировать дополнительные возможности Повышения надежности лопаточного аппарата, целесообразно затронуть вопрос о неиспользованных возможностях. Коэффициент запаса прочности для лопаток последних ступеней турбин большой мощности, вычисленный по статическим напряжениям, сравнительно невелпк. Как известно, для современных мощных турбин он составляет 1,5—1,6. Между тем как со стороны эксплуатации, та и со стороны турбостроительных заводов встречаются нарушения режимов работы турбины и технологии изготовления лопаток, которые соответствуют данным расчета на механическую прочность. К нарушениям нормальных условий эксплуатации относятся частые пуски и остановы, понижение начальной температуры пара, которое при сохранении нагрузки неизменной вызывает увеличение расхода, ухудшение вакуума, изменение частоты в сети, работа турбины без отдельных ступеней. К заводским нарушениям можно отнести следующие большие коэффициенты концентрации наиряжений у -кромок отверстий для скрепляющей проволоки, в месте перехода от хвостовика к перу лопатки, в ленточном бандаже, у кромки отверстий для шипов не всегда достаточная отстройка лопаток от опасных форм колебаний снижение предела выносливости при защите лодаток от эрозийного износа. Поэтому в первую о чередь необходимо потребовать строгого соблюдения режима эксплуатации и технологии изготовления рабочих лопаток.  [c.214]

В результате такого анализа определяются зоны, в которых основные силовые элементы подвержены тяжелым спектрам переменных напряжений и имеют высокую концентрацию напряжений, остаточные деформации при статических испытаниях, минимальные запасы по статической прочности, усталостной долговечности и живучести, ограниченную контролепригодность. В этих зонах также возможно проявление многоочаговых усталостных повреждений.  [c.422]

И Х18Н10Т при запасе прочности по пределу текучести равном 1,5, долговечность получается не менее 10 . При температурах интенсивного деформационного старения сталей типа 22к и Х18Н10Т и соответствующих запасах статической прочности по пределу текучести долговечность при мягком нагружении увеличивается. При тех же относительных напряжениях для циклически разупрочняющейся стали ТС в рассматриваемом диапазоне температур минимальные долговечности получаются на порядок меньше, чем для сталей 22к и Х18Н10Т. Если учитывать, что для циклически разупрочняющихся материалов отношение предела текучести к пределу прочности обычно превышает 0,65, то минимальные значения допускаемых напряжений для них получаются не по пределу текучести, а по пределу прочности. Поэтому долговечность для этих сталей при номинальных допускаемых напряжениях, устанавливаемых по пределу прочности (например, при Па = 2,6), оказывается больше, чем при номинальных напряжениях по пределу текучести.  [c.257]


Асимметричный цикл нагружения. Расчет на прочность таких деталей, как диски и валы, которые работают при действии переменных напряжений на фоне статических напряжений от центробежных сил и термических нагрузок, выполняют на основе гипотеа усталостной прочности для сложного напряженного состояния асимметричного цикла. Для диска характерным является сочетание переменного изгиба с расположением узловых линий по, диаметру или по окружности с двухосным статическим растяжением. Для вала характерным является сочетание переменных напряжений круче-, ния, растяжения и изгиба со статическим крутящим и изгибающим напряжением. Запас усталостной прочности в условиях сложного напряженного состояния можно определить, приведя асимметричный цикл переменных напряжений к симметричному через известные зависимости (Диаграммы предельных амплитуд)  [c.85]

Зависимости (30) и (31) дают результаты, достаточно хорошо согласующиеся с экспериментальными данными для ад < 3,5. При больших значениях применение формулы дает результаты, идущие в запас прочности. Для вычисления значения упругопластических и циЕлических упругопласти-ческнх коэффициентов концентрации J(p, KfK и кроме известных значений теоретического коэффициента концентрации необходимо знать зависимость напряжения от деформации при статическом и циклическом упругопластическом деформировании.  [c.110]

Дефекты округлой или неправильной формы, но с плавными очертаниями, оказывают меньщее воздействие на снижение эксплуатационных свойств сварных соединений, чем при наличии дефектов с острыми очертаниями. Особенно опасны трещины и трещиноподобные дефекты— непровары, подрезы, окисные включения. Такие дефекты даже при статических нагрузках могут стать очагами хрупких разрушений. Существенное значение при этом имеют свойства основного металла и температурный режим, при котором эксплуатируется сварная конструкция. В конструкциях, работающих в условиях естественно низких температур (до минус 60°С), материал сварного соединения углеродистых и значительной части низколегированных сталей обладает относительно большим запасом вязкости. Разрушающие напряжения в этом случае превышают предел текучести материала, а сами разрушения имеют вязкий характер. С дальнейшим понижением температуры вязкость материала уменьшается и хрупкое разрушение может возникнуть даже при низких напряжениях и относительно малых размерах начальных дефектов.  [c.20]

Корпуса энергетического оборудования и сосуды под давлением, работающие при статическом и повторно-статическом режимах на гружения, представляют собой крупногабаритные конструкции, в которых по условию прочности и надежности не допускается развития в большом объеме материала пластических деформаций [1]., Нормы расчета на-прочность [2] поэтому предусматривают в качестве основы расчетных методов оценку прочности, в частности, по т 1Кому предельному состоянию, как пластическая деформация по всему сечению детали. Это выражается в назначении допускаемого коэффициента запаса прочности по пределу текучести = 1,5, который учитывается при выборе основных размеров элементов по общим мембранным напряжениям. Например, в цилиндрической оболочке допускаемые расчетное давление р и давление гидроиспытаний соответственно в 1,73 и 1,38 раза меньше величины рт соответствующей началу текучести в гладкой части оболочки (по условию Мизеса).  [c.122]


Смотреть страницы где упоминается термин Запас при статических напряжениях : [c.165]    [c.17]    [c.159]    [c.205]    [c.23]    [c.21]    [c.24]    [c.102]    [c.611]    [c.223]    [c.482]    [c.23]   
Расчет на прочность деталей машин Издание 4 (1993) -- [ c.40 , c.41 ]



ПОИСК



Запас

Запас напряжениям

Напряжения статические



© 2025 Mash-xxl.info Реклама на сайте