Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Срединной решение с применением теории оболочек

Расчет оболочек на основе уравнений теории упругости связан с большими математическими трудностями. Наука еще не располагает практически удобными методами решения более или менее широкого круга прикладных задач. Теория оболочек стремится упростить эти задачи с учетом специфики оболочек. Прежде всего, принимается во внимание тот факт, что толщина оболочки мала по сравнению с двумя другими линейными ее размерами.. Легко представить, что картина деформированного-и напряженного состояний тонкой оболочки существенно зависит также-от свойств срединной поверхности. Во многих технических применениях встречаются оболочки, срединные поверхности которых являются в достаточной степени пологими, и учет этого факта позволяет также вносить значительное упрощение в задачу.  [c.268]


Книга представляет собой изложение первой части пособия по теории оболочек сложной геометрии. В ней даны основные сведения из теории поверхностей, изложены методы решения задачи параметризации срединных поверхностей оболочек сложной формы и неканонических очертаний опорного контура, базирующиеся на применении теории конечных деформаций поверхностей. Исследо -ван класс оболочек сложной формы, пологих относительно поверхностей канонических очертаний.  [c.2]

При исследовании оболочек нулевой кривизны и пологих оболочек, срединная поверхность которых изометрична плоской пластинке, нередко за вспомогательное принимается состояние пластинки, что упрощает построение ядер, но вместе с тем меняет и их структуру. В последнее время выдвинута идея о применении фокусированных ядер, т. е. быстро затухающих вспомогательных состояний, для улучшения сходимости вычислительного процесса (Н. А. Кильчевский, 1960 Н. А. Кильчевский, X. X. Константинов и Н. И. Ремизова, 1966). Пока же весь этот круг вопросов характеризуется различными постановками задач, выдвижением новых способов и отсутствием конкретного опыта, добываемого прж решении задач приведения до логического конца, т. е. до определенной системы двумерных уравнений. Наибольший интерес представляет решение задач, при которых напряженное состояние оболочки должно быть найдено при помощи уравнений теории упругости (например, краевые эффекты типа Сен-Венана, состояние около сосредоточенной нагрузки, около фронтов распространения возмущений и т. д.).  [c.265]

Применение уравнений трехмерной теории упругости к исследованию устойчивости упругих тел с учетом изменения их граничных поверхностей было предложено А.Ю. Ишлинским и Л.С. Лейбензоном [5, 6]. В трехмерной линеаризованной постановке в работах А. П. Гузя и его учеников [2, 7, 8, 9] были получены решения задач устойчивости анизотропных элементов конструкций, которые послужили основой для оценки точности различных прикладных теорий, использующихся в расчетной практике. Оказалось, что теория оболочек, в которой деформации поперечного сдвига учитываются в соответствии с гипотезой Тимошенко, позволяет находить критические нагрузки с незначительной погрешностью. Эта оценка относится и к таким интегральным характеристикам, как низшие частоты свободных колебаний оболочки из КМ. В то же время решение уравнений теории оболочек типа Тимошенко менее трудоемко, чем уравнений теории упругости, особенно в случае оболочек сложной геометрии. Такими, в частности, являются цилиндрические оболочки с волнообразной срединной поверхностью, которые при большом количестве волн принято называть гофрированными. Устойчивость последних рассматривалась в работах [10, 11] путем замены их эквивалентными ортотропными. Хотя экспериментальные данные обнаруживали более высокую эффективность гофрированных оболочек [10], приближенное дискретное решение не подтвердило возможности увеличения критических нагрузок за счет придания профилю поперечного сечения волнообразного характера. Недостатков приближенного подхода удалось избежать в работах [12-14], где устойчивость гофрированных оболочек рассматривалась с учетом изменяемости геометрических параметров по направляющей. Из проведенных авторами этих работ исследований вытекает, что при равновозможности общей и локальной форм потери  [c.105]


В выводе уравнений элементарной теории пластинок принимается, что каждый тонкий слой пластинки, параллельный ее срединной плоскости а г/, находится в плоском напряженном состоянии, в силу чего отличными от нуля остаются только три компоненты напряжения Оу и Тху. Для более толстых пластинок полезно иметь полное решение задачи с учетом всех шести компонент напряжения. Несколько решений этого рода было предложено Сен-Венаном в его переводе книги Клебша ). Некоторые элементарные строгие решения для круглых пластинок были найдены А. П. Коробовым ), опыт же построения общей строгой теории пластинок был предложен Дж. Мичеллом ) и получил дальнейшее развитие в книге А. Лява ) по теории упругости. В последнее время строгая теория, пластинок обратила на себя внимание инженеров и некоторые ее задачи были полностью решены. Особого упоминания заслуживают труды С. Войновского-Кригера ) и Б. Г. Галер-кина ). Возрастающий успех, который находят в настоящее время в разнообразных технических применениях тонкостенные конструкции, привлек большое внимание к теории оболочек. Приемлемое для практики решение во многих, относящихся к тонким оболочкам, задачах становится достижимым, если пренебречь изгибом и допустить, что напряжения распределяются по толщине  [c.492]

Отметим прежде всего работы Б. Г, Галеркина (1932, 1935) по применению к анализу толстых плит общих решений уравнений теории упругости, выраженных через бигармонические функции, а также монографии Б. Г. Галеркина (1934) и Ю, А. Шиманского (1934), посвященные расчету пластинок разного очертания по классической теории изгиба. Метод асимптотического интегрирования для расчета оболочек вращения впервые был применен И. Я, Штаерманом (1924) он же указал на аналогию между статическими расчетами оболочки вращения и кривого (плоского) стержня на упругом основании. Решение ряда интересных задач безмоментной теории куполов дано в монографии В. Э. Новодворского (1932), с именем которого связано одно из условий применимости безмоментной теории тангенциальные краевые условия не должны допускать изгибания срединной поверхности (В. Э. Новодворский, 1933),  [c.228]

В практических применениях, как правило, приходится иметь дело с оболочками, в которых тангенциальные геометрические условия обеспечивают жесткость срединной поверхности, т. е. исключают ее изгибания (в противном случае оболочка станет невыгодной в прочностном отношении этот физически понятный факт подтвердится в части IV). Тогда возможные изгибания иадо Считать равными нулю, а это значит, что любая внешняя нагрузка будет удовлетворять условию нулевой работы и теорема о возможных изгибаниях превратится в теорему существования и единственности решения полной безмоментной краевой задачи при любой, достаточно гладкой, нагрузке.  [c.220]

Параллельно развитию общей теории были достигнуты существенные результаты и в решении частных задач линейной теории. Теория безмо-ментных оболочек обогатилась установлением зависимости общего характера решения от знака гауссовой кривизны срединной поверхности (В. В. Соколовский, 1943), использованием аналогии между задачами изгибания поверхностей и безмоментной теории для вывода заключений о единственности решения (Ю. Н. Работнов, 1946), применением в ряде работ теории функций комплексного переменного для расчета оболочек, представляющих собой центральные поверхности второго порядка. Большое количество исследований было посвящено расчету цилиндрических оболочек — наиболее часто встречающемуся в практике типу оболочек (В. В. Новожилов, 1946 А. Л. Гольденвейзер, 1947 А. И. Лурье, 1946).  [c.230]


Прочность Колебания Устойчивость Т.3 (1968) -- [ c.424 , c.425 ]



ПОИСК



Оболочки Теория — См. Теория оболочек

Оболочки — Применение

Теории Применение

Теория оболочек

Теория оболочек — Применение



© 2025 Mash-xxl.info Реклама на сайте