Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

См. также Колебания решетки Фононы

Анизотропия кристаллов усложняет также законы отражения и преломления акустич. волн на границах раздела сред падающая волна при отражении и преломлении может расщепляться на неск. волн разных типов, в т. ч, и поверхностных. Пространственная дисперсия, обусловленная периодичностью крист, решётки, приводит к вращению плоскости поляризации сдвиговых волн (т, н. акустическая активность). Затухание звука в кристаллах определяется его рассеянием на микродефектах и дислокациях, поглощением вследствие вз-ствия упругой волны с тепловыми колебаниями крист, решётки — фононами, поглощением, обусловленным термоупругими и тепловыми эффектами. В металлах и ПП существует специфич. вид поглощения звука вследствие вз-ствия УЗ с эл-нами проводимости (см. Акустоэлектронное взаимодействие), а в ферромагнетиках и сегнетоэлектриках дополнит. поглощение связано с доменными процессами.  [c.323]


К, а у чистой ртути с естеств. изотопным составом (jW = 200,G) К. Исследования показали также, что одновременно с изменяется критическое магнитное поле (при Т 0), но отношение для разных изотопов данного сверхпроводящего металла остаётся постоянным. И. э. свидетельствует, что сверхпроводимость связана с массой частиц, образующих кристаллич. решётку, и обусловлена взаимодействием электронов с фононами (колебаниями решетки).  [c.121]

Большое и всё возрастающее значение приобретает К. р. с. при исследовании кристаллов [8]. Для К. р. с. осп. значение имеет оптич. ветвь колебаний кристалла. Метод К. р. с. стал основным при изучении динамики кристаллич. решётки, изучении разл. квазичастиц (фононов, поляритонов, магнонов и др.), а также исследовании мягкой моды. Вместе с тем разработаны эфф. методы анализа по спектрам К- р. с. кристаллов микроскопич. размеров и кристаллич. порошков [2 9].  [c.421]

Колебания кристаллической решётки) сопровождаются волной алектрич. поляризации, и создаваемое ею алектрич. поле действует на электрон. Впоследствии термин П. приобрёл более широкий смысл и применяется к электрону, взаимодействующему с любыми фононами, а также с магнонами и др. квазичастицами.  [c.80]

Динамич. теория кристаллич. решётки позволила объяснить упругие свойства Т. т., связав значения статич. модулей упругости с силовыми константами. Тепловые свойства—температурный ход теплоёмкости (см. Дебая закон теплоёмкости, Дебая температура), коэф. теплового расширения и теплопроводность — как свойства газа фононов (в частности, температурный ход теплоёмкости) объясняются как результат изменения с темп-рой числа фононов и длины их свободного пробега. Оптич. свойства, напр, поглощение фотонов ИК-излучения, объясняются резонансным возбуждением оптич. ветви колебаний кристаллич. решётки — рождением оптич. фононов (см. также Динамика кристаллической решётки).  [c.46]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Процессы переноса, связанные с движением злоктро-нов в металле, также можно исследовать с помощью К. у. Б. В отсутствие колебаний решётки электроны свободно распространяются в металле и описываются плоскими волнами, модулированными с периодом решётки и зависящими от волнового вектора к и номера энергетич. зоны I. Тепловое движение атомов решётки нарушает периодичность и приводит к рассеянию электронов (столкновениям между электронами и фононами), Ф-ция распределения электронов  [c.362]

Носители заряда в М.— электроны проводимости с энергией, близкой к Причиной сопротивления служит рассеяние электронов на любых нарушениях периодичности кристаллич. решётки. Это тепловые колебания ионов (фононы), сами электроны (см. Межэяект-ронное рассеяние), а также разл. дефекты — примесные атомы, вакансии (сечение рассеяния 10 —10 см ), дислокации (сечение 10 —10 см ), границы кристаллов и образца (см. Рассеяние носителей заряда).  [c.117]

Квантование колебат. движения атомов, составляющих кристаллич. решётку, позволило ввести квазичастицы — фононы (см. также Колебания криспюллической решётки).  [c.45]

ИЗОТОПЙЧЕСКИЙ ЭФФЁКТ, зависимость критич. темп-ры сверхпроводящего металла от его изотопного состава возрастает при уменьшении ср. ат. массы М в-ва. Для ряда металлов при этом выполняется соотношение Tj -МЧ i— onst. Впервые И. 9. наблюдался в 1950 было установлено, что у изотопа Гк— =4,156 К, а у чистой ртути, имеющей естеств. изотопный состав со ср. ат. массой 200,6, T =A,in К. Исследования показали также, что одновременно с 7 к изменяется критическое магнитное поле //"к, о (при Г— -О К), но отношение для разных изотопов данного сверхпроводящего металла остаётся постоянным. И. э. свидетельствует, что сверхпроводимость связана с массой образующих решётку ч-ц и обусловлена вз-ствием эл-нов с фононами (колебаниями решётки).  [c.213]

Одно из проявлений вырожденности Н. с.— наличие в ней наряду с обычными акустик, фононными ветвями (см. Колебания кристаллической решётки) дополнит, акустик, ветвей (от 1 до 3) с частотой со, обращающейся в О при стремлении к О волнового вектора к. Такие возбуждения наз. фазанами. В отличие от акустич. фонона частота длинноволнового фазона меньше коэф. затухания и возбуждение носит не колебательный, а релак-сац. характер. Это объясняется тем, что даже при сдвиге замороженной волны , переводящем кристалл в энергетически эквивалентное состояние, происходят смещения атомов в Н. с. друг относительно друга и, следовательно, при конечной скорости этого сдвига имеет место диссипация энергии. Наличие фазона проявляется при неупругом рассеянии излучений, а также в особенностях спин-решёточной релаксации.  [c.335]

Другой механизм поглощения, также имеющий место в большинстве веществ, связан с нелинейным взаимодействием звуковой волны и тепловых колебаний крн-сталлич. решётки, т. е. с взаимодействием звуковых и тепловых фононов. Такое П. з. поэтому часто наз. решёточным или фононным . Оно проявляется на ВЧ в достаточно чистых и бездефектных кристаллах. В зависимости от частоты и соотношения длины волны УЗ и длины свободного пробега тепловых фононов в кристалле (определяемой темп-рой) рассматриваются разл, модели фононного поглощения. На сравнительно низких частотах действует т. н. механизм Ахиезера. Он заключается в том, что звуковая волна, представляющая собой когерентный пучок фононов, нарушает равновесное распределение тепловых фононов, и вызванное ею перераспределение знергпи между фононами приводит к необратимому процессу диссипации энергии. Этот механизм имеет релаксац. характер, причём роль времени релаксации играет время жизни фюпо-на, равное т 1/с 3-к1сус , где I — длина свободного пробега фонона, с — средняя скорость звука. В этом случае коэф. П. з.  [c.658]

Дрейфовая скорость и, следовательно, П. и. з. ограничиваются процессами их рассеяния, к-рое происходит на дефектах крпсталлич. решётки (гл. обр. на примесных атомах), а также на тепловых колебаниях кристаллической решётки (испуская или поглощая фонон, электрон изменяет свой квазиимпульс, а следовательно и скорость Цдр). Поэтому П. н. з. зависит от темп-ры Т. С понижением Т доминирующим становится рассеяние на заряж. дефектах, вероятность к-рого растёт с уменьшением энергии носителей.  [c.666]

ПОЛЯРОН — носитель заряда (для определённости — электрон), окружённый (одетый) шубой виртуальных фононов, способный перемещаться вместе с ней по кристаллу. Электрон-фононное взаимодействие приводит наряду с обычным рассеянием электрона на фононах (см. Рассеяние носителей заряда) также к изменению энер-гетич. спектра электронов (поляронЕЫЙ эффект). Понятие П. введено С. И. Пека ром (1946), к-рый предложил первую модель П., основанную на взаимодействии электрона проводимости с длинноволновыми продольными оптич. фононами в ионных кристаллах [1]. Механизм этого взаимодействия электростатический. Продольные оптич. колебания ионной решётки (см.  [c.80]


Заключение. Концепция Ф. (как и др. квазичастиц) помогает описать мн. свойства твёрдых тел, используя представления кинетич. теории газов. Так, решеточная тепло-проводностъ кристаллов для неметаллов — это теплопроводность газа Ф., длина свободного пробега к-рых ограничена фонон-фононным взаимодействием, а также дефектами кристаллич. решётки при низких темп-рах (границами образца). Поглощение звука в кристаллич. диэлектриках—результат взаимодействия звуковой волны с тепловыми Ф. В аморфных (в т. ч. стеклообразных) телах Ф. удаётся ввести только для длинноволновых акустич. колебаний, мало чувствительных к взаимному расположению атомов и допускающих континуальное описание твёрдого тела (см. Упругости теория).  [c.339]

Э. имеют конечное время жизни электрон и дырка, составляющие Э., могут рекомбинировать с излучением фотона, Э. также может рекомбинировать безызлучатель-но при столкновении с дефектами кристаллич. решётки. На рис. 3 показан спектр экситонного излучения кристалла Ge при темп-ре 4,2 К, соответствующий распаду Э. с испусканием продольных и поперечных оптических LO, ТО) и акустических LA, ТА) фононов (см. Колебания кристаллической решётки).  [c.502]

При решении ур-ния Шрёдингера с использованием псевдопотенциала для расчёта энергий и волновых ф-ций внеш. электронов в одноэлектронном приближении (в рамках приближений слабой или сильной связи, см. Зонная теория) применима возмущений теория при этом кристаллич, решётка считается неподвижной (т, н. приближение статической решётки). Учёт тепловых колебаний ионов вблизи положений равновесия в узлах кристаллич. решётки благодаря Э.-и. в. приводит к электрон-фононно.ну взаимодействию (об Э.-и. в. в атомах, молекулах и плазме см. в ст. Атом, Молекула, Плазма, а также Рекомбинация ионов и электронов в плазме и Ридберговские состояния).  [c.545]

В конденсиров. средах возможны разл. типы возбуждений и, следовательно, К. Колебания атомов (или ионов) около положения равновесия распространяются по кристаллу в виде волн (см. Колебания кристаллической решётки). Соответствующие К. наз. фононами. Единств, тип движения атомов в сверхтекучем гелии — звук, волны (волны колебаний плотности). Соответствующие К. наз. фононами и ротонами, все они — бозоны. Колебания магн. моментов атомов в магнитоупорядоченных средах представляют собой волны поворотов спинов (см. Спиновые волны). Соответствующая К.—магнон—также бозон. В полупроводниках К. являются эл-ны проводимости и дырки (обе — фермионы). Взаимодействуя друг с другом и с др. К., эл-ны и дырки могут образовывать более сложные К. экситон Ванье — Мотта, полярон, фазон, флуктуон).  [c.250]

У разных типов носителей в одном и том же в-ве ц различны, а в анизотропных кристаллах различны р. каждого типа носителей для разных направлений поля Е. Подвижность эл-нов проводимости и дырок определяется процессами рассеяния эл-нов в кристалле. Рассеяние происходит на дефектах кристаллич. решётки, а также на её тепловых колебаниях фононах). Испуская или поглощая фонон, носитель изменяет свой квазиимпульс, а, следовательно, и скорость. Поэтому ц сильно зависит от темп-ры. При комнатных темп-рах (Г 300 К), как правило, преобладает рассеяние на фононах, с понижением темп-ры вероятность этого процесса падает, и доминирующим становится рассеяние на дефектах (особенно заряженных), вероятность к-рого растёт с уменьшением энергии носителей.  [c.557]


Смотреть страницы где упоминается термин См. также Колебания решетки Фононы : [c.373]    [c.587]    [c.213]    [c.476]    [c.574]    [c.9]    [c.586]    [c.87]    [c.781]   
Физика твердого тела Т.2 (0) -- [ c.0 ]

Физика твердого тела Т.1 (0) -- [ c.0 ]



ПОИСК



Газ фононный

Газ фононов

Колебания решетки

Колебания решетки Фононы

См. также Ангармонические члены Колебания решетки Фононы

Фононы 1-фононные

Фононы 2-фонониые



© 2025 Mash-xxl.info Реклама на сайте