Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интерференционное отражение

Из выражения (3.44) и рис. 3.9 ясно, что коэффициент отражения шах значителен в случаях, когда велик параметр / ] (эффект интерференционного отражения) либо когда мал параметр g (эффект Бормана). Рассмотрим более подробно существо этих эффектов.  [c.93]

Интерференционное отражение и эффект Бормана  [c.93]

Эффект интерференционного отражения проявляется в тех случаях, когда справедливо условие Re (81 — 82)] > Im 81, т е. I / os я j > 1. При этом глубина проникновения s-поля-  [c.93]

В кристалле можно провести бесконечное множество систем параллельных атомных плоскостей в различных направлениях. Таковы, например, плоскости, параллельные атомной плоскости АЛ или атомной плоскости ВВ (рис. 229, б). Эффективными являются только такие плоскости, на которых атомы расположены достаточно часто. От всех этих плоскостей возможно интерференционное отражение. И дифракционную картину можно рассматривать как совокупность рентгеновских пучков, претерпевших отражения на таких атомных плоскостях.  [c.391]


В 1913 г. Ю. В. Вульф (1863—1925 гг.), а затем не-сколько позже В. Брэгг и В. Брэгг показали, что эту интерференционную картину — рентгенограмму (рис. 17) — можно истолковать как результат интерференции лучей, отраженных от отдельных параллельных атомных плоско--стей.  [c.36]

Аналогичные вышеприведенные расчеты показывают, что и в этом случае радиусы для минимумов и максимумов определяются соответственно формулами (5.3) и (5.4). Следовательно, интерференционные картины в отраженном и прошедшем свете взаимно дополняют друг друга (рис. 5.2 и 5.3).  [c.95]

Конкретно свет от источника S, расположенного в фокусе линзы Л, направляется на поверхность полупрозрачной пластинки СС. Отраженный от этой пластинки световой пучок через линзу л направляется на поверхность воздушного зазора. Отраженные лучи, налагаясь, дают на экране F, расположенном в фокальной плоскости линзы, интерференционную картину. Если исследуемая поверхность такая же гладкая, как и поверхность эталона, то в зависимости от относительного положения этих пластин будет наблюдаться интерференция полос равного наклона  [c.104]

Лучи 1 W 2 после отражении от зеркал 3i и 3.2 выходят из пластинки Пу и направляются в зрительную трубу 7. Как видно из рис. 5.19, луч 1 проходит через пластинку III один раз, в то время как луч 2 проходит через нее три раза. С целью создания идентичных условий для обоих лучей на пути луча / помещают пластинку Яа, имеющую такую же толщину, как и пластинка Я]. От воздушной прослойки, образованной зеркалом 3i и изображением 3i зеркала З. , в пластинке Я наблюдается интерференционная картина. В зависимости от относительного положения 3i и З.2 будет наблюдаться интерференция полос равного наклона или равной толщины. Если 3 строго перпендикулярно 3i, то 3 и З-2 будут строго параллельны. В этом случае будут наблюдаться  [c.112]

При интерференции двух волн, возникающих в результате отражения или преломления света, исходящего из точечного источника, появляется стационарная интерференционная картина, которая никак не локализована. Иными словами, в любой области пространства, где перекрываются интерферирующие пучки, можно наблюдать интерференцию. Эта особенность интерференции, возникающей при использовании точечного источника света, была, например, продемонстрирована в опыте с бипризмой Френеля.  [c.210]

В проходящем сеете всегда возникает интерференционная картина, дополнительная к появляющейся в отраженном свете. Ото положение, легко демонстрируемое на примере колец Ньютона, позволяет еще раз отметить общее свойство всех интерференционных явлений — стационарная интерференционная картина всегда возникает в результате перераспределения потока энергии в пространстве.  [c.215]


Но добиться высоких коэффициентов отражения 1 > 30%) таким образом практически невозможно. Эффект можно значительно усилить, если перейти от интерференции двух лучей к многолучевой интерференции. В этом случае интерференционные максимумы окажутся более острыми и их интенсивность ( макс) резко возрастет (см. 5.7).  [c.219]

Следует, конечно, учитывать, что подобные интерференционные зеркала отражают в довольно узкой спектральной области, и чем больше коэффициент отражения, тем у же область длин волн Ал. внутри которой реализуется такое значение Л (рис. 5.36).  [c.220]

Так же как и функция видимости, резкость F, характеризу ющая форму контура интерференционной полосы, полностью определяется коэффициентом отражения Я При Я — 1 имеем F — 00. Если Я 0,9 (такое значение Я для зеркал часто используют в реальных интерферометрах), то резкость F оказывается немногим меньше 30 (рис. 5.66). Это значит, что расстояние между двумя соседними максимумами примерно в 30 раз больше ширины каждого из них.  [c.241]

Хотя изложение основ рентгеноструктурного анализа не является задачей этой книги, упомянем здесь об интерференционном методе исследования кристаллов, в котором используют дискретные рентгеновские спектры характеристические лучи) — резкие пики, появляющиеся на сплошном фоне рентгеновского излучения при больших ускоряющих потенциалах. Кристаллографическими исследованиями было установлено, что в любом кристалле можно обнаружить определенные плоскости, в которых атомы или ионы, составляющие его решетку, упакованы наиболее плотно. Такие плоскости отражают монохроматическое рентгеновское излучение, и, следовательно, может происходить интерференция волн, отраженных различными плоскостями. Очевидно, что усиление отраженной волны произойдет лишь под вполне определенным углом 0 (рис. 6.78). Если разность хода (А = АО + ОВ) равна целому числу длин волн, то  [c.351]

О размерах частиц вещества можно судить по рентгенограммам порощков. Вещества, кристаллы которых имеют размер 10 см, на рентгенограммах дают четкие интерференционные отражения. На рентгенограммах веществ с размерами частиц меньше 10 см получаются размытые рентгеновские линии чем меньше частица, тем более размыты линии. Аморфные вещества на рентгенограммах, кроме фона, не дают никаких отражений.  [c.265]

Принцип действия интерферометров основан на использовании явле+1ия интерференции света, отраженного от образцовой и исследуемой поверхностей. Форма образующихся интерференционных полос зависит от вида и высоты (до 1 мкм) неровностей контролируемой поверхности. Принцип действия растровых микроскопов основан на явлении образования муаровых полос при наложении ]130бражений элементов двух периодических структур (направленных следов обработки и д.чфракцнонной решетки). При наличии неровностей муаровые полосы искривляются. Высоту микронеровностей определяют по степени искривления муаровых полсс.  [c.201]

Интересно рассмотреть случай, когда источник находится в бесконечности, т. е. отраженные от поверхности лучи идут параллельно и наблюдение производится глазом, адаптированным на бесконечность или же в фокальной плоскости объектива телескопа. В этом случае оба интерферирующих луча, идущих от 5 к А, происходят от одного падающего луча SM (рис. 4,17). В зависимости от разности хода лучей в точке А будут наблюдаться максимум и минимум. Так как интерференционная картина определяется оптической разностью хода между интерферирующими лучами, то необходимо найти эту разность. Вследствие того что оптические длины (произведение геометрической длины пути луча на показатель преломления среды, в которой распространяется луч) всех прощедших  [c.85]

Если наблюдение ведется в монохроматическом свете, то интерференционная картина п[1едстаБЛяет собой чередование светлых и темных полос. При наблюдении в белом свете илеика оказывается окрашенной в разные цвета. Подобная окрашенность пленок, обусловленная интерференцией отраженных от поверхностей лучей, носит название цветов тонких пленок. Следует заметить, что при наблюдении в белом свете отклонение от параллельности поверхности пластинки должно быть незначительным. Заметное отклонение от параллельности приводит к значительному сближению полос  [c.89]


Подобные полосы в-первые наблюдались Г уком. Однако вследствие того, что онн были подробгю исследованы Ньютоном, их называют кольцами Ньютона. Схема, с помощью которой наблюдаются кольца Ньютона, представлена на рис. 5.1. Роль пластинки переменной толщины играет воздуи/пая прослойка между линзой и плоскопараллельной пластинкой. Границы этой пластинки определяются снизу верхней поверхностью плоскопараллельной пластинки, сверху—нижней поверхностью линзы. Параллельный пучок света, выделенный из точечного источника, расположешюго в фокусе линзы (линза и источник на рисунке не изображены), направляется на систему линза — плоскопараллельная пластинка. Некоторый луч 1 этого пучка после отражения от нижней поверхности воздушной прослойки выходит из точки D. В эту же точку падает другой луч 2, который частично отражается. Лучи / п 2 являются когерентными и при наложении интерферируют между собой. Так как подобная интерференционная картина наблюдается с помощью отраженных лучей, то ее называют интерференционной картиной в отраженном свете. Аналогичную картину можно наблю-дат з в прошедшем свете.  [c.93]

Высокоотражающие интерференционные покрытия (интерференционные зеркала). Наряду с необходимостью уменьшать коэффициент отражения на практике часто приходится решать противоположную задачу — получать высокоотражающие поверхности. При решении также и этой задачи па помош,ь приходит явление интерференции. Легко убедиться, что если в системе, изображенной на рис. 5.14, показатель преломления диэлектрического слоя взять больше показателя преломления стекла п > п ), то произойдет увеличение коэффициента отражения. Вследспзие того, что потеря полуволны будет происходить теперь только на пиеш-ней поверхности пленки, оптическая разность хода между отраженными когерентными волнами I и 2 будет равна Л/4 + Х/4 + к/2 = = X, что соответствует разности фаз, равной 2я. Таким образом,  [c.108]

НаправленШ) на пластинку луч разбивается на два, которые направляются на зеркала 3 и З - Отраженные от этих зеркал лучи J и 2 частично проходят, а частично отражаются от пластинки Я,, в результате лучи / и 2 направляются иа щель спектрографа (если необходимо определить изменения показателя для разных длин волн) или же интерференционная картина наблюдается непосредственно. Меняя расстояние между Я, и 3j, южно получать нужное расхождение лучей / и 2. Используя интерферометр Рождественского со спектрографом, имеюпхим источник непрерывного спектра, можно исследовать спектр поглощения.  [c.112]

Резкость интерференционной картины. Резкость интерференционной картины будет зависеть от коэффициента отражения нанесенной на пластины пленки. На рис. 5.22 показана зависимость резкости полос интерференции для разных значений R от углового расстояния относительно центра интерференционной картины. Значение R = 0,04 соответствует поверхности чистого стекла, в то время как R = 0,99 соответствует поверхности с многослойным покрытнбм. Следует обратить внимание па то, что при рассмотрении интерференции многих лучей мы полагали R + Т = I, т. е. пренебрегали поглощением внутри пластинки. Однако при нанесении на поверхность пластины полупрозрачного металлического слоя происходит поглощение, в результате чего интенсивность изменится. Поэтому пользуются выражением R + Т + А I, где А — коэффициент суммарного поглощения света отражающими слоями.  [c.115]

Голографирование. Восстановление изображения предмета. Уширенный с помощью простого оптического устройства пучок лазера (рис. 8,1) одновременно направляется на исследуемый объект и на зеркало. Отраженная от зеркала опорная волна и рассеянная объектом световая волна надают на обычную фотопластинку, где происходит регистрация возникшей сложной интерференционной картины. После соответствующей экспозиции фотопластинку проявляют, в результате чего получается так называемая голограмма — за[)егнстрнро-ванная на фотопластинке нптерфереици-онная картина, полученная при наложе-пип опорной н предметной воли. Голограмма внешне похожа на равномерно засвеченную пластинку, если не обращать внимания иа отдельные кольца н нятна, возникшие вследствие дифракции света на пылинках и не имеющие отношения к информации об объекте.  [c.206]

В обоих случаях отраженное и падающее излучения взаимнокогерентны. Однако в первом случае при отражении света электрический вектор сохраняет неизменным свое направление, в результате чего возникает соответствующая интерференционная картина, получающаяся в результате сложения падающей и отраженной волн с последующим выделением серебра в соответствующих участках  [c.229]

Луч, нсходящи из источника S, падая на полупрозрачную пластинку /7, разбивается на два луча / н 2. Лучи / и 2 проходят через трубы, наполненные водон, направление течения которой указано стрелкой. Лучи / и 2 после отражений от зеркал Sj, 3j и 3., распространяются по направлению к приемнику. Будучи когерентными, они могут интерферировать, образуя соответствующую интерференционную картину.  [c.420]

Искры во вторичном контуре наблюдались в тех местах комнаты, в которые первггчная и отраженная электромагнитные волны приходили в одинаковой фазе и амплитуда колебаний напряженности вихревого электрического поля была максимальной. Расстояние между двумя соседними интерференционными максимумами равно половине длины волны.  [c.249]

Отражение света от двух поверхностей тонкой пластинки. В качестве такой пластинки вьп одно взять тонкий пласт слюды голщиной OKO.TO 0,05 мм, легко отделяющийся от основного блока. Источником света слунсит ртутная дуга, которая располагается примерно в полуметре от плоскости слюдяной пластинки (рис. 5.15). Никакая фокусирующая огггика не применяется (отчетливая интерференционная картина видна на стене аудитории или на потолке). При этом нет необ.ходимости использовать какую-либо щель для ограничения раз.меров источника. Последнее обстоятельство необходимо рассмот )е гь более подро()но, так  [c.195]


Это неравенство показывает, что чем меньше апертура интерференции, тем больше допустимые размеры источника. Такое количественное соотношение находится в полном согласии с результатами описанных ранее опытов (отражение света от тонкой слюдяной пластинки, зеркало Ллойда), в которых уда-юсь наблюдать четкую интерференционную картину при больших размерах источника света. Как уже указывалось, апертура интерференции в этих опытах была очень мала. Становится также понятной роль дополнительной щели в опыте Юнга. Ведь произведение 2dtgo), определенное неравенством (5.31), связано с угловыми размерами источника света, ограничение которых и позволило Юнгу наблюдать интерференцию света от двух щелей (см. 6.5).  [c.201]

Зависимость резкости интерференционной картины от ко-зфнциента отражения  [c.242]

Вьпле указывалось, что в проходящем свете узкие максимумы разделены широкими минимумами. Соотношение (5.72) показывает, что в отраженном свете широкие максимумы разделены узкими минимумами. Как и следовало ожидать, интерференционные картины в проходящем и отраженном свете оказываются дополнительными.  [c.243]


Смотреть страницы где упоминается термин Интерференционное отражение : [c.62]    [c.94]    [c.188]    [c.252]    [c.746]    [c.158]    [c.125]    [c.78]    [c.84]    [c.86]    [c.93]    [c.100]    [c.101]    [c.105]    [c.115]    [c.214]    [c.215]    [c.216]    [c.243]    [c.244]    [c.254]   
Общий курс физики Оптика Т 4 (0) -- [ c.252 ]



ПОИСК



Зависимость дальности фона интерференционной картины от коэффициента отражения

Отражение



© 2025 Mash-xxl.info Реклама на сайте