Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы обратимые

Если элементы обратимого гальванического элемента с потенциалами в разомкнутом состоянии (Уа)обр и (Ук)сбр и сопротивлением электролита между ними в цепи R замкнуть и измерить установившееся значение силы генерируемого тока /, то оказывается, что эта сила тока значительно меньше рассчитанной по закону Ома, т. е.  [c.192]

Важным параметром при выборе материала электродов является получаемая разность электрических потенциалов между электродами. Значение разности потенциалов для данного элемента можно вычислить из термодинамических соображений. Важным отличием электрохимического элемента от тепловых двигателей, рассмотренных в гл. 4, является его способность создавать электрический ток. Это необходимо учесть при формулировке первого закона термодинамики. Пусть ток отводится от элемента обратимо и количество переносимого между электродами заряда равно dQ. Можно записать  [c.88]


Если, однако, разность потенциалов Ее несколько меньше Е, Ее <. Е), то реакция будет продолжаться, а если Ее несколько больше Е, то реакция будет проходить в обратном направлении. Если все физические и химические явления, происходящие в элементе, обратимы, то, поддерживая разность потенциалов Ее равной Е, можно вызвать в элементе квазистатические изменения.  [c.217]

Обратимые элементы. Обратимыми называются элементы, которые обратимы по отношению к направлению тока, т. е. если через элемент пропускать ток в обратном направлении, то в нём будут протекать реакции, обратные тем, которые протекают при работе элемента, и элемент восстанавливается.  [c.340]

Если все процессы в топливном элементе обратимы, то, как было показано выше, — Si = Q plT, и, следовательно,  [c.173]

Поясним роль структурного элемента (зерна или блока) при анализе накопления повреждений в материале. Ранее (см. раздел 2.3) было отмечено, что одним из основным механизмов, образования микротрещин является скопление дислокаций у препятствий (барьеров), которыми в большинстве случаев являются границы зерен, блоков и фрагментов, сформировавшихся в процессе деформирования материала. Если размер обратимой упругопластической зоны меньше диаметра зерна dg, плоские скопления дислокаций не доходят до границ зерен, поэтому здесь не создается необходимая для зарождения микротрещин концентрация напряжений. С другой стороны, в теле зерна отсутствуют барьеры дислокационного происхождения, которые могут служить стопорами для скопления дислокаций. Значит,  [c.213]

Из проведенного анализа следует, что структурный элемент определяется параметром, равным наименьшему объему обратимо пластически деформируемого материала, для которого применимы уравнения, связывающие размах пластической деформации в цикле с долговечностью анализируемого материала.  [c.214]

Ранее при анализе деформирования материала в вершине трещины было сделано допущение об однородности НДС по структурному элементу. Анализ НДС с учетом этого допущения приводит к двум возможным состояниям первое — при циклическом нагружении обратимая пластическая деформация отсутствует в структурном элементе второе — зона обратимой пластической деформации равна структурному элементу или больше его. При введенном определении структурного элемента такой подход достаточно обоснован. Дело в том, что если раз-  [c.214]

Определение размера обратимой упругопластической зоны и разбиение ее на структурные элементы.  [c.217]

При разработке моделей прогнозирования трещиностойкости и развития трещин необходимо было сформулировать условие накопления повреждений в градиентных полях напряжений и деформаций. Было показано, что повреждения накапливаются, если размер необратимой упругопластической зоны (при статическом нагружении) или обратимой упругопластической зоны (при циклическом нагружении) больше структурного элемента, размер которого во многих случаях можно принять равным диаметру зерна. В противном случае, когда размер упругопластической зоны меньше размера структурного элемента, материал практически не повреждается и локальные критерии разрушения, сформулированные в терминах механики сплошной деформируемой среды, не дают адекватных реальным ситуациям прогнозов.  [c.264]


Очертание поверхности. Основные требования, предъявляемые к чертежам, используемым в начертательной геометрии и инженерно-технической практике обратимость чертежа и его наглядность (см. гл. 1). Вместе с тем графическое задание поверхности на обратимом чертеже проекциями элементов ее определителя не обеспечивает достаточной наглядности. Необходимо дополнять чертеж поверхности ее очертаниями на плоскостях проекций.  [c.84]

Измеряемая э. д. с. определяется электродными реакциями, протекающими на обоих электродах элемента. Обычно наш интерес сосредоточен на реакции, идущей лишь на одном из электродов. Примером может служить критерий полной катодной защиты, основанный на измерениях потенциалов. Для подобных измерений используют электрод, имеющий относительно постоянное значение потенциала независимо от среды, в которой он находится (этот электрод называется электродом сравнения или полуэлементом сравнения). Тогда любое изменение э. д. с. является результатом изменения потенциала исследуемого электрода, а не электрода сравнения. Примеры таких устойчивых обратимых электродных систем приведены ниже.  [c.43]

Работа гальванического элемента — процесс обратимый и при внешнем напряжении большем, чем э. д. с. гальванического элемента, начнется обратный процесс — электролиз. Таким образом, электролиз данного соединения начинается только при определенной разности потенциалов, носящей название потенциал разложения  [c.294]

Сформулируйте основные свойства параллельного проецирования. 4. Что называют несобственными элементами пространства 5. Что называют обратимостью чертежа 6, Сформулируйте и покажите на чертежах особенности методов ортогональных и аксонометрических проекций, проекций с числовыми отметками а федоровских проекций. 7. Что называют координатами точки пространства в декартовой системе координат 8. Укажите основные свойства чертежей геометрических образов. 9. Укажите особенности осных и безосных чертежей.  [c.27]

В 1.4 рассмотрен способ обеспечения обратимости чертежа проецированием на две взаимно перпендикулярные плоскости проекций, который повсеместно применяется в машиностроительном и строительном черчении. Обратимость чертежа обеспечивается и другими способами. Например, если рядом с обозначением ортогональной проекции точки на одной плоскости проекций указать величину расстояния (т. е. координату г) от точки до ее проекции, то такой чертеж тоже будет обратимым. При этом положительному знаку будет соответствовать положение точки над плоскостью проекций, отрицательному — под ней. Такие проекции носят название проекций с числовыми отметками. Их используют, например, в топографическом черчении на географических картах, на планах местности. Более подробно они будут рассмотрены в главе, посвященной элементам топографического черчения.  [c.17]

Величина максимальной работы, отнесенная к единице переносимого заряда, есть не что иное, как ЭДС элемента, т.е. разность потенциалов, устанавливающаяся между его электродами при отсутствии тока. Таково определение ЭДС. Но отсутствие тока означает бесконечно малую скорость переноса зарядов. Этого можно добиться, уравновешивая электрическую силу, действующую на заряды в пространстве между электродами, какой-то другой силой. Тогда процесс будет обратимым достаточно лишь чуть увеличить эту силу, чтобы заставить заряд двигаться обратно.  [c.112]

При обратимости процесса на такую же величину должна уменьшиться энтропия среды. Это значит, что среда отдаст элементу тепло  [c.117]

Электромеханические устройства, понимаемые как совокупность конструктивно объединенных и перемещаемых относительно друг друга элементов, в которых протекают взаимосвязанные электрические и механические процессы для целей обратимого преобразования электрической энергии в механическую, включают в свой состав большое разнообразие объектов, различных по способам преобразования энергии, конструкции, выполняемым функциям. Вместе с тем имеется ряд общих особенностей, которые делают целесообразным рассмотрение проблем автоматизации проектирования для всего многообразия ЭМУ в рамках единого учебного пособия, которое адресуется студентам-  [c.5]


Кинематические пары отличаются следующими признаками числом простейших относительных движений, которых звенья лишаются при соединении их в кинематические пары видом элементов кинематических пар свойством обратимости видом относительного движения звеньев. Рассмотрим эти признаки. Любое перемещение свободного тела в пространстве можно рассматривать как совокупность шести независимых друг от друга движений трех поступательных движений параллельно осям координат х, у, г и трех вращательных движений относительно осей, параллельных осям х, у, г (рис. 3.101).  [c.494]

Рассмотрим обратимый элемент, в котором при пропускании тока в противоположном направлении происходят обратные химические реакции (например, элемент Даниэля). При малых токах джоулева теплота, пропорциональная квадрату силы тока, есть величина второго порядка малости и поэтому процесс протекания тока в элементе можно считать термодинамически обратимым. Работа элемента при прохождении через него заряда е равна ei. Уменьшение внутренней энергии равно тепловому эффекту реакции при постоянном атмосферном давлении Q , и уравнение (10.2) дает eS = Qp + Te dS dT)p и  [c.179]

Найти зависимость электродвижущей силы обратимого гальванического элемента от внешнего давления.  [c.220]

Проведем с обратимым гальваническим элементом цикл Карно, заставляя его работать сначала изотермически, потом адиабатно, а затем, пропуская через него ток от внешнего источника, совершим над ним работу также изотермически и адиабатно.  [c.337]

Тепловой эффект реакции в гальваническом элементе. Основываясь на общих термодинамических соотношениях, можно выяснить, как э. д. с. обратимого гальванического элемента связана с тепловым эффектом реакции, происходящей в элементе при протекании через него тока.  [c.160]

Примером обратимой реакции при постоянных Тир является реакция, происходящая в гальваническом элементе между электролитом и веществом положительного электрода при малой силе тока в замкнутой цепи, когда джоулевой теплотой можно пренебречь. По величине максимальной э. д. с. элемента можно определить максимальную работу, а следовательно, и убыль энергии Гиббса в данной реакции.  [c.498]

Пусть, например, в /-м элементе энергетической установки произошла потеря работы, равная АГ < >. Это значит, что действительно произведенная в этом элементе работа будет на AI <>> меньше той, которая была бы произведена при вполне обратимом процессе. Потерянная работа или переходит в теплоту, которая поглощается рабочим телом (если потеря работы сопряжена, например, с действием сил трения), или остается в виде не использованной в данном элементе установки теплоты у внешних источников теплоты, т. е. в любом случае трансформируется в теплоту = АГ К Так как  [c.519]

В случае, когда все процессы обратимы и температуры окружающей среды и элемента одинаковы, А5 0, так как расширенная система является адиабатической.  [c.596]

Определение разиахов пластической н упругой деформаций и максимальных напряжений в цикле (с учетом их ограничения сверху) для каждого структурного элемента обратимой упругопластической зоны.,  [c.217]

Если все процессы в топливном элементе обратимы, то общий прирост энтропии системы Д5, состоящий из изменения энтропии активных веществ в результате токообразующей реакции 8 — 5 и изменения энтропии окружающей среды А5 = 0°1%/Т (где — теплота, отведенная от окружающей среды к элементу), равняется нулю, т. е.  [c.598]

При замыкании в электролите двух обратимых электродов с разными потенциалами [(Уа)обр и (VJoepl происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы и наступила бы полная поляризация. В действительности анодный и катодный электродные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т. е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного npow a — деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе (см. с. 192) потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается (см. с. 271, 282 и 287).  [c.191]

Таким образом, для накопления повреждений необходимо и достаточно выполнение двух условий первое — наличие обратимой пластической деформации в цикле второе — размер зоны обратимой пластической деформации должен быть больще размера зерна (или блока). Тогда AKth можно определить как размах КИН, при котором зона обратимой пластической деформации должна быть равна размеру структурного элемента. Очевидно, в данном случае величина AKth отлична от нуля и непосредственно зависит от параметров структуры материала, что соответствует данным работы [156]. При АК > AKth повреждение в элементе будет накапливаться и трещина будет развиваться.  [c.214]

Как следует из изложенного выше, связь между размахом КИН и размером обратимой пластической зоны в значительной степени определяет величину Kth- Поэтому с целью оценки влияния допущения об однородности НДС в структурном элементе на размер пластической зоны были сопоставлены пластические зоны при двух вариантах расчета МКЭ при условии малости структурного элемента (в этом случае конечного) рстр <С Гр, что эквивалентно расчету в рамках механики деформируемого твердого тела, и расчетом  [c.215]


Таким образом, из проведенного анализа следует, что допущение об однородности НДС по структурному элементу приводит к значительному отличию по отношению к классическому подходу механики разрушения в оценке величины AKth из условия / р = рстр. Отсутствие необходимости такого допущения можно определять по условию < рстр, причем рассчитывается по формуле (4.38). В этом случае зона обратимого пластического деформирования, рассчитанная как по классическому методу (рис. 4.7, линия 2), так и по формуле (4.38), прак- чести по всему контуру не достигает границ структурного элемента. Следовательно, необходимости в допущении об однородности НДС по структурному элементу не существует.  [c.216]

Здесь (Tmax (1, L), M 4 (1, L) и D (I, L)—соответственно максимальные напряжения в цикле, эффективный размах деформации и параметр, пропорциональный повреждению материала в первом структурном элементе при длине трещины L Де /п (1, L)—эффективный размах деформации в первом структурном элементе при длине трещины L, рассчитанный, когда этот элемент только попал в зону обратимой упругопластической деформации.  [c.217]

Для построения проекционных изображений поверхности на комплексном чертеже необходимо выяснить, проекции каких элементов поверхности необходимо задать для того, чтобы получить обратимый (ил11 метрически определенный) чертеж этой поверхности.  [c.79]

Стандартизация упругих элементов (пружин, мембран и др.) предусматривает обеспечение взаимозаменяемости как по присоединительным размерам, так и по характеристике, выражаюш,ей зависимость перемещения (деформации) торца пружины или рабочего центра другого элемента от приложенной силы. Оптимальное значение параметров и стабильность характеристики упругих элементов определяются точностью их размеров и формы, механическими свойствами материалов, а также конструктивными и технологическими факторами. Упругие элементы должны иметь мппимальное упругое последействие (т. е. минимальную остаточную обратимую деформацшо, исчезающую в течение некоторого времени после снятия нагрузки) и наименьшую петлю гистерезиса (несовпадение характеристик при нагружении и разгружении, определяемое максимальной разностью между деформациями при нагружении и разгружении упругого элемента). Для определения влияния геометрических, механических и других параметров на работу упругих 76  [c.76]

По характеру соприкосновения элементов пары разделяются на высшие и низшие. Низшими называются такие пары, у которых требуемое относительное движение звеньев может быть получено постоянным соприкосновением элементов пары по поверхности, например поступательная, вращательная, винтовая, щаровая пары. Низщие пары обладают свойством обратимости движения, т. е. форма траекторий точек звеньев в отно-  [c.16]

Высшими называются такие пары, в которых требуемое относительное движение может быть получено только соприкосновением элементов пары по линиям или в точках, например шар на плоскости, цилиндр на плоскости, соприкосновение зубьев зубчатых колес и т. д. Высшие пары свойством обратимости не обладают. Рассматривая пару цилиндр — плоскость, устанавливаем, что точки цилиндра при качении его по непо-движнш плоскости описывают траектории--циклоиды, а при обкатывании плоскости по неподвижному цилиндру точки плоскости описывают траектории — эвольвенты. Таким образом, в высших парах формы траекторий точек звеньев будут различными в зависимости от того, какое звено считать неподвижным.  [c.19]

В гальваническом элементе, как мы вилели, работа химических сил реакции определяется э.д.с. элемента так что S обратимого элемента является мерой сродсгва, вызывающего в элементе химическую реакцию. Поэюму, измеряя < , мы определяем химическое сродс1во.  [c.181]

Как было указано в главе XVI Л, скорость и полнота химической реакции определяются химическим сродством реагирующих элементов. Степень химического сродства элементов определж тся величиной максимальной работы, причем для изохорно-изотерми-ческой реакции максимальная работа определяется уменьшением изохорного потенциала F, а для изобарно-изотермической — уменьшением изобарного потенциала Z. Чем большее значение имеет максимальная работа реакции, тем больше химическое сродство элементов, тем полнее проходит реакция, т. е. тем меньше делается к моменту равновесия исходных веществ и больше конечных. Из формулы (19.8) видно, что чем полнее проходит реакция, тем меньше значение константы равновесия. Можно заключить, что максимальная работа реакции связана определенными зависимостями с константой равновесия. Уравнение, связывающее эти две величины, называется изотермой химической реакции. Для вывода этого уравнения предположим, что в смеси обратимо происходит реакция по уравнению  [c.217]

Проведение реакции в гальваническом элементе. В гальваническом элементе происходит химическая реакция между электролитом и веществом, из которого сделан положительный электрод. В результате этой реакции в замкнутой цепи элемента поддерживается постоянный ток. Если сопротивление внешней цепи настолько велико и, следовательно, сила тока настолько мала, что выделяющейся в цепи джоу-левой теплотой можно пренебречь, то прохождение тока и вызванную им реакцию можно считать обратимым процессом, происходящим в условиях постоянного давления и температуры.  [c.491]

Электродвижущая сила топливного элемента. Процесс в гальваническом, а следовательно, и в топливном элементе может считаться обратимым, если только протекающий в замкнутой цепи электрический ток достаточно мал, т. е. внешнее сопротивление велико (так как в этом случае джоулева теплота, пропорциональная квадрату плотности силы тока р, будет пренебрежимо мала по сравнению с полезной работой, пропорциональной / другие источники необратимости пока не рассматриваются). В этом случае полезная внешняя работа (в дальнейшем повсюду полезная внешняя работа относится к единице рабочей площади, например, мембраны) за время т будет равна произведению электродвижущейся силы е на электрический заряд р,,-= /т, протекающий через элемент, т. е. = ер .  [c.596]


Смотреть страницы где упоминается термин Элементы обратимые : [c.372]    [c.121]    [c.181]    [c.215]    [c.215]    [c.227]    [c.27]    [c.153]    [c.3]   
Технический справочник железнодорожника Том 1 (1951) -- [ c.340 ]



ПОИСК



Обратимость



© 2025 Mash-xxl.info Реклама на сайте