Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка Сила резания металлов — Шлифование — Скорости

Обработка — Сила резания — Расчетные формулы 584 — Развертывание — Подачи 591 — Сверление — Подачи 589, 590 — Скорость резания — Расчетные формулы — Коэффициент поправочный 579, 581, 583 ---металлов — Шлифование — Скорости 528  [c.905]

Интенсификация шлифования. Высокоскоростное шлифование. На операциях со снятием большого припуска повышение скорости круга позволяет пропорционально увеличить минутный съем металла при сохранении стойкости круга и параметров шероховатости шлифованной поверхности. На операциях окончательного шлифования, когда необходимо повысить качество обрабатываемой поверхности, увеличение скорости круга не должно сопровождаться ростом поперечной подачи (минутного съема металла). В этом случае высокоскоростное шлифование позволяет уменьшить параметры шероховатости поверхности, повысить точность обработки путем снижения силы резания и износа круга, а также увеличить производительность с помощью уменьшения числа правок круга, сокращения времени выхаживания и увеличения общей стойкости круга. На современных круглошлифовальных станках скорость круга может быть увеличена до 50—60 м/с.  [c.398]


Большинство абразивных зерен шлифовального круга имеют неблагоприятную для резания форму граней. Расщепление зерен и скругление их граней в процессе работы еще более ухудшают геометрию. Поэтому шлифование протекает при более высоком давлении, чем при любом другом методе обработки металлов резанием. Значительные силы трения в процессе шлифования, скольжение зерна по обрабатываемой поверхности в момент его врезания и высокие скорости резания вызывают мгновенное локальное повышение температуры и сложное пластическое деформирование поверхностных слоев. Сильно деформированные слои вытягиваются в направлении резания, образуя местные скопления металла. Возможно местное оплавление поверхности в случае работы отдельных зерен  [c.51]

При механической обработке металл впереди резца переходит в пластическое состояние под действием сил резания и повышенной температуры. Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от режимов резания и вязкости материала. При точении, фрезеровании, протягивании, т. е. при процессах, производящихся с относительно небольшими скоростями, но с большими силами резания, поверхностный слой наклепывается на значительную глубину. При шлифовании вследствие высоких температур в поверхностном слое возникают структурные превращения на глубине нескольких сотых миллиметра. Например, после  [c.18]

Следовательно, вибрирование режущего инструмента с ультразвуковой скоростью снижает пластическую деформацию срезаемого слоя металла, уменьшает силы резания и влияет на ряд других показателей процесса резания металлов. Обработку металлов резанием с наложением ультразвуковых колебаний осуществляют при точении, сверлении, шлифовании.  [c.622]

Введением ультразвуковых колебаний в систему резец — изделие можно повысить производительность и улучшить качество обработанной поверхности при обработке металлов резанием. Наиболее эффективно и рационально вводить колебания в направлении резания, так как при этом улучшается чистота поверхности и уменьшается усадка стружки. Вибрирование режущего инструмента с ультразвуковой скоростью снижает пластическую деформацию срезаемого слоя металла, уменьшает силы резания и влияет на ряд других показателей процесса резания металлов. Обработку металлов резанием с наложением ультразвуковых колебаний осуществляют при точении, сверлении, шлифовании.  [c.449]


При обработке резанием металл впереди резца переходит в пластическое состояние под действием сил резания и повышенной температуры. Глубина поверхностного слоя с разрушенной кристаллической структурой зависит от режимов резания и вязкости материала. При точении, фрезеровании, протягивании, т. е. при процессах, происходящих с относительно небольшими скоростями, но с большими силами резания, поверхностный слой наклепывается на значительную глубину. При шлифовании вследствие высоких температур в поверхностном слое возникают структурные превращения на глубине нескольких сотых миллиметра например, после шлифования наружный слой стальной детали, закаленной на мартенсит, оказывается закаленным на аустенит следующий слой — на троостит, и только после этого слоя следует слой с первоначальной мартенситной структурой. На качество поверхности влияют смазочно-охлаждающие жидкости. Они уменьшают трение между инструментом и заготовкой и понижают температуру трущихся поверхностей. Наклеп и шероховатость поверхности зависят от вибрации станка, инструмента и заготовки. Колебательные движе-  [c.19]

При обдирочном шлифовании обработку производят с глубиной резания, доходящей до 5 мм и выше. Обдирочное шлифование чаще используют при врезном шлифовании и применяют для обработки заготовок после литья, ковки и в других случаях, требующих удаления большой массы металла. Обдирочное шлифование производят при скорости круга 35—80 м/с и с силой прижима круга к заготовке до 10 кН, при этом съем металла достигает 300 килограммов в час и выше при коэффициенте шлифования (отношение снятого материала к израсходованному материалу круга, выраженного в объемах) не менее 12.  [c.146]

Абразивное и алмазное шлифование отличаются от лезвийной обработки высокими скоростями резания, большими удельными силами резания и высокой температурой. Она может достигать температуры плавления металла, а скорость нагрева и последующего охлаждения ПС - сотен тысяч градусов в секунду (от 10 до 10 град/с), что на несколько порядков превышает аналогичные скорости обычной термообработки. Формирование ПС протекает в сложных условиях одновременного силового и термического воздействия, которое вызывает пластические и термопластические деформации, а в ряде случаев структурно-фазовые и химические превращения в тонких слоях.  [c.178]

Быстрота действия поверхностно-активного расплава. В большинстве случаев изменение механических свойств металлов происходит практически немедленно после смачивания их поверхности соответствующим металлическим расплавом или другим поверхностно-активным веществом. При обработке твердых тел резанием и шлифованием влияние активных веществ проявляется в полную силу, хотя скорости обработки достигают десятков метров в секунду.  [c.230]

С увеличением скорости ленты уменьшаются значения Ру-и Pz, а также натяг в системе СПИД, так как при постоянных значениях продольной и поперечных подач, параметров инструмента и других условий шлифования глубина резания одним абразивным зерном обратно пропорциональна скорости инструмента. При больших скоростях ленты глубина резания и, следовательно, сила, приходящаяся на отдельное зерно, меньше, чем при малых скоростях. Здесь также действуют два противоположных фактора. Уменьшение объема металла,-срезаемого отдельными зернами, снижает силы Ру и Pz, а уменьшение глубины резания уменьшает отношение az/p количество трущих и скоблящих зерен увеличивается. Следовательно, при изменении только скорости ленты зависимость P=f(vii) может иметь экстремальную точку минимума, правее которой процесс обработки протекает при неблагоприятных условиях. Значит, скоростное ленточное шлифование будет эффективно, если одновременно с увеличением скорости ленты увеличивать продольную и поперечную подачи.  [c.24]

Одним из основных показателей качества прошлифованных изделий является шероховатость обработанной поверхности. Наличие однозначных взаимосвязей между шероховатостью поверхности и величиной, поддающейся контролю в процессе обработки, позволяет за счет управления процессом шлифования по этой регулируемой величине обеспечить требуемое значение Для процессов шлифования жесткими шлифовальными кругами установлены функциональные зависимости шероховатости поверхности от скорости съема металла, скорости поперечной подачи, частоты вращения круга и детали, усилий резания, текущего значения диаметра круга и других регулируемых величин. Построение автоматической системы с использованием жестких шлифовальных кругов и регулируемой величины, обеспечивающей заданное значение шероховатости, подразумевает получение заданной точности геометрических размеров изделия за счет процесса выхаживания и установки круга на заданный размер. Для эластичного шлифования указанная установка круга отсутствует, так как ЭШК в процессе работы поджимается к обрабатываемому изделию постоянной силой Р. Поэтому при реализации автоматической системы эластичного шлифования с регулируемой величиной, функционально связанной только с шероховатостью поверхности, трудно ожидать обеспечения высокой точности геометрических размеров изделия. Поэтому подобные системы могут найти применение, например, на операциях обдирки, зачистки, тонкой шлифовки, где снимаемый припуск мал. Для разработки алгоритмов таких систем могут быть использованы функциональные зависимости (27)—(29), приведенные в п. 3-гл. I.  [c.150]


К режущим сверхтвердым материалам относятся природные (алмаз) и синтетические материалы. Самым твердым из известных инструментальных материалов является алмаз. Он обладает высокой износостойкостью, хорошей теплопроводностью, малыми коэффициентами линейного и объемного расширения, небольшим коэффициентом трения и малой адгезионной способностью к металлам, за исключением железа и его сплавов с углеродом. Наряду с высокой твердостью алмаз обладает и большой хрупкостью (малой прочностью). Предел прочности алмаза при изгибе = = 3000 МПа, а при сжатии = 2000 МПа. Твердость и прочность его в различных направлениях могут изменяться в 100—500 раз. Это следует учитывать при изготовлении лезвийного инструмента. Необходимо, чтобы алмаз обрабатывался в мягком направлении, а направление износа соответствовало бы его твердому направлению. Алмаз обладает высокой теплопроводностью, что благоприятствует отводу теплоты из зоны резания и обусловливает его малые тепловые деформации. Низкий коэффициент линейного расширения и размерная стойкость (малый размерный износ) алмаза обеспечивают высокую точность размеров и формы обрабатываемых деталей. Большая острота режущей кромки и малые сечения среза не вызывают появления заметных сил резания, способных создавать деформацию обрабатываемой детали и отжатия в системе СПИД. К недостаткам алмаза относится и его способность интенсивно растворяться в железе и его сплавах с углеродом при температуре резания, достигающей 750° С (800° С), что в наибольшей мере проявляется в алмазном лезвийном инструменте при непре-швном контакте стружки с поверхностью его режущей части, 1ри температуре свыше 800° С алмаз на воздухе горит, превращаясь в аморфный углерод. К недостаткам алмазных инструментов также относится их высокая стоимость (в 50 и более раз сравнительно с другими инструментами) и дефицитность. В то же время алмазный инструмент отличается высокой производительностью и длительным сроком службы (до 200 ч и более) при обработке цветных металлов и их сплавов, титана и его сплавов, а также пластмасс на высоких скоростях резания. При этом обеспечиваются высокая точность размеров и качество поверхности, что, как правило, исключает необходимость операции шлифования обрабатываемых деталей,  [c.92]

Зависимости сил резания от режимов ленточного шлифования имеют сложный характер изменения с экстремальными точками. Положение экстремума зависимостей P = f vя, t) связано с состоянием абразивного покрытия ленты и силой закрепления зерен связкой. В частности, при шлифовании сталей 60С2А и ЗЗХЗСНМВФА твердостью 51,5—54,5 НКСэ лентой из электрокорунда белого марки 24А зернистостью 40 на станке ПЛШ80 получены тангенциальные составляющие силы Рг и мощности резания N с экстремальными точками максимума. При повышении подачи стола 5ст происходит увеличение Рг я N до определенных значений , после чего Рг а N начинают понижаться. Положение экстремальных точек кривых Рг = /1 ( ) и N == 2(8) зависит от скорости ленты Vл и глубины шлифования. Например, с увеличением Ул при постоянной глубине резания 1 (рис. 8.16, а) или с уменьшением t при постоянной скорости ленты (рис. 8.16,6) экстремум указанных зависимостей смещается по оси абсцисс вправо. Это положение объясняется тем, что увеличение Ул или уменьшение / (при неизменных других параметрах обработки) способствует уменьшению объема металла, срезаемого отдельными зернами. В среднем нагрузка на каждое зерно снижается.  [c.217]


Смотреть страницы где упоминается термин Обработка Сила резания металлов — Шлифование — Скорости : [c.29]    [c.615]    [c.137]    [c.117]   
Справочник технолога машиностроителя Том 2 Издание 2 (1963) -- [ c.528 ]



ПОИСК



704 — Скорости резани

Металлы Шлифование

Обработка Шлифование — Скорости

Обработка металлов резанием

Обработка резанием

Обработка шлифованием

От скорости сила

Резание металлов

Резание металлов скорость резания

Сила резания

Сила резания при резании

Силы резания при шлифовании

Скорость обработки

Скорость резания. Силы резания

Шлифование Скорости



© 2025 Mash-xxl.info Реклама на сайте