Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сердечник

Трансформатор однофазный с ферромагнитным сердечником а — двухобмоточный б — трехобмоточный (форма I — упрощенный способ, форма// —развернутый способ)  [c.316]

Катушки индуктивности дроссель без сердечника  [c.271]

Электромагнитная муфта Y1 (рис. 465) питается постоянным током, напряжение которого по условиям техники безопасности не должно превышать 24 В. При напряжении сети переменного тока 380 В питание электромагнитной муфты YI осуществляется через однофазный трансформатор TI (с ферромагнитным сердечником) и выпрямительное устройство VI (выполненное с применением полу-  [c.278]


Составной частью твэла, помимо сердечника с ядерным топливом, является оболочка. Она должна  [c.11]

Чз табл. 1.2 следует, что в качестве материала сердечников используется не только карбидное, но п окисное топливо. Объясняется это следующим. В последнее время было обнаружено, что реакция окисления пироуглерода с образованием окиси углерода быстро затухает при достижении равновесной концентрации СО. По-видимому, выбор окисного топлива определяется лучшими свойствами двуокиси урана по удержанию  [c.14]

Существует несколько методов изготовления топливных сердечников. Наиболее распространенным среди них является химический золь-гель-процесс, разработанный в США [6]. Он обеспечивает получение сферических частиц из двуокиси и карбида урана с высокой плотностью ( 98% теоретической) в широком диапазоне размеров. Исходными продуктами при изготовлении топливных сердечников методами порошковой металлургии являются двуокись урана и углерод в виде сажи. При температуре 2800° С происходит взаимодействие двуокиси урана с углеродом и образование карбида урана. После спекания и сплавления частиц проводится их грануляция и рассев.  [c.15]

Для получения крупного зерна и устранения наклепа металл подвергают отжигу при высокой температуре. Технически чистое железо применяют для изготовления сердечников, реле и электромагнитов постоянного тока, магнитных экранов, полюсов электрических машин и других деталей.  [c.547]

Электротехническую сталь изготавливают в виде тонких листов, которые используют для изготовления сердечников трансформаторов, магнитопроводов электрических машин и аппаратов переменного и постоянного тока.  [c.548]

Режим сварки при использовании трансформаторов с дросселем и трансформаторов с подмагпичивацием постоянным током регулируют путем изменения индуктивного сопротивления реактивной обдготки или участка сердечника, насыщаемого от дополнительной обмотки, питаемой no TOHJJUbur токо. г.  [c.132]

Правила выполнения чертежей пружин (401) Условные изображения зубчатых колес, реек, червяков и звездочек цепных передач (402) Правила выполнения чертежей цилиндрических зубчатых колес (403), — зубчатых реек (404) — конических зубчатых колес (405) — цилиндрических червяков и червячных колес (406) — червяков и колес червячных глобоидных передач (407) — звездочек приводных роликовых и втулочных цепей (408) — зубчатых (шлицевых) соединений (409) — металлических конструкций (410) — труб и трубопроводов (411) — чертежей и схем оптических изделий (412) — электромонтажных чертежей электротехнических и радиотехнических изделий (413) — чертежей жгутов, кабелей и проводов (414) — изделий с электрическими обмотками (415) Условные изображения сердечников магнитопроводов (416) Правила выполнения документации при плазовом методе производства (419) Упрощенные изображения подшипников качения на сборочных чертежах (420) Правила выполнения чертежей печатных плат (417) — чертежей тары Правила выполнения звездочек для грузовых пластинчатых цепей (421), — чертежей цилиндрических зубчатых колес передач Новикова с двумя линиями зацепления (422).  [c.363]


Правила выполнения чертежей пружин (401 ) Условные изображения зубчатых колес, реек, червяков и звездочек цепных передач (402 ) Правила выполнения чертежей цилиндрических зубчатых колес (403 ), зубчатых реек (404 ), конических зубчатых колес (405 ), цилиндрических червяков и червячных колес (406 ), червяков и колес червячных глобоид-ных передач (407), звездочек приводных роликовых и втулочных цепей (408), зубчатых (шлицевых) соединений (409 ), металлических конструкций (410 ) труб и трубопроводов и трубопроводных систем (411), чертежей и схем оптических изделий (412 ). Правила выполнения конструкторской документации изделий, изготовляемых с применением электрического монтажа (413 ) Правила вьшолнения чертежей жгутов, кабелей и проводов (414 ), изделий с электрическими обмотками (415 ) Условные изображения сердечников магни-топроводов (416) Правила выполнения чертежей печатных плат (417 ) Правила выполнения конструкторской документации упаковки (418 ) Правила выполнения документации при плазовом методе производства (419 ) Упрошенные изображения пошшшников качения на сборочных чертежах (420 ) Правила выполнения рабочих чертежей звездочек для пластинчатых цепей (421), цилиндрических зубчатых передач Новикова с двумя линиями зацепления (422), чертежей элементов. гштейной формы и отливки (423 ), чертежей штампов (424), рабочих чертежей звездочек для зубчатых цепей (425), звездочек для разборных цепей (426), звездочек для круглозвенных цепей (427) Правила вьшолнения чертежей поковок (429 ).  [c.313]

Размер микротвэла колеблется от нескольких сот микронов до нескольких миллиметров. Для покрытия сферического керамического топливного сердечника используются преимущественно пиролитический графит и карбиды тяжелых металлов и кремния.  [c.12]

Необходимые толщину и пористость покрытий микротвэла можно рассчитать на основе предложенной Скоттом и Прадо-сом математической модели [15]. При известных прочностных характеристиках плотного запирающего силового слоя можно определить зависимость допустимой глубины выгорания ядер-ного топлива от толщины покрытия, пористости сердечника и буферного слоя с учетом анизотропного расширения и усадки покрытия, происходящих под действием потока быстрых нейтронов и термического отжига.  [c.15]

Радиационные исследования микротвэлов показали, что вег роятность разрушения защитного покрытия увеличивается с повышением температуры, увеличением интегрального потока быстрых нейтронов и глубины выгорания ядерного топлива. Разрушение плотного пироуглеродного двухслойного покрытия происходит в результате образования трещин, либо из-за увеличения давления газообразных продуктов деления и распухания сердечника, причем в этом случае трещина начинает образовываться на внутренней поверхности защитного слоя, либо из-за упадки наружного слоя плотного пироуглерода в результате воздействия значительного интегрального потока быстрых нейтронов, и тогда трещина образуется на наружной поверхности микротвэла. Анализ более 100 радиационных исследований микротвэлов в США и ФРГ подтвердил справедливость предложенной расчетной модели [16].  [c.16]

Таким образом, двухслойное пироуглеродное покрытие подвержено усадке при высоком интегральном потоке (выше ]0 нейтр./см ), но обладает химической совместимостью с топливным сердечником вплоть до температуры 2000° С и может быть использовано только для реакторов ВГР при температуре гелия 1000° С и более. Для микротвэлов реакторов БГР предпочтительным с точки зрения работоспособности при интегральном потоке >10 2 нейтр./см является покрытие из карбида кремния с минимальным пироуглеродным подслоем, но при этом максимальная температура покрытия должна быть значительно меньше 1600° С.  [c.16]

Шаровые твэлы первой загрузки реактора AVR имели наружный диаметр 60 мм. Они представляли собой пустотелые графитовые сферы с резьбовой пробкой, внутренняя полость сфер диаметром 40 мм была заполнена смесью микротвэлов и матричного графита со связующим веществом. Первая загрузка шаровых твэлов в количестве 100 тыс. штук была разработана и изготовлена в Ок-Ридже (США). Полые сферы изготавливались из графитовых блоков повышенной плотности, из тех же заготовок вытачивались уплотняющие пробки. Микротвэлы размещались на внутренней поверхности полой сферы, после чего она заполнялась смесью графитовой пыли с каменноугольной смолой. После заворачивания пробки и ее уплотнения проводился низкотемпературный отжиг (до 1500° С, при таких температурах графитизация матрицы сердечника не происходит). Поскольку сложность и, следовательно, стоимость изготовления подобных сборных твэлов очень высока, вторая загрузка реактора была выполнена из прессованных твэлов того же наружного диаметра 60 мм.  [c.26]


У прессованных твэлов центральная часть представляет собой сферу диаметром 50 мм, состоящую из равномерной смеси микротвэлов, матричного размельченного графита и связующих веществ, спрессованных под сравнительно небольшим давлением (4 МПа). После прессования графитовой оболочки с топливным сердечником при большом давлении ( 300 МПа) проводится длительный низкотемпературный отжиг при 800° С для коксования каменноугольной смолы и кратковременный высокотемпературный нагрев до 1800° С для обезгаживания твэлов.  [c.26]

В твэлах реактора AVR используются микротвэлы с карбидными топливными сердечниками и двойным пироуглеродным покрытием, в твэлах реактора THTR-300 — окисные топливные сердечники с тройным покрытием из пироуглерода и карбида кремния. В качестве делящегося материала используется (обогащение 93%) в смеси с воспроизводящим материалом — торием. Объемное содержание микротвэлов в топливном сердечнике ТВЭЛа реактора AVR около 8%, а в реакторе THTR-300 не превышает 17%, что практически не сказывается на прочности графитовой матрицы.  [c.26]

Для изготовления топливного сердечника и оболочки используется графитовый порошок, приготовленный из смеси природного графита, электрографита и связующих, объемные доли которых берутся одинаковыми. После изготовления шарового твэла ни материал оболочки, ни материал матрицы топливного сердечника не являются собственно графитом, а представляют собой углеродистый материал, который под воздействием нейтронного излучения и температуры может иметь существенные объемные изменения. В случае разнородного материала происходила бы неравномерная деформация оболочки и сердечника, что привело бы к разрушению твэла. Недостатком технологии изготовления прессованных твэлов является также большое усилие, имеющее место при прессовании твэла. Большое усилие может вызвать разрушение части микротвэлов в сердечнике.  [c.27]

Проведенные радиационные исследования шаровых твэлов дали положительные результаты при отсутствии в сердечнике поврежденных микротвэлов большинство выделяющихся газообразных продуктов деления обусловлено только загрязнениями ураном самой графитовой матрицы сердечника. При использо-  [c.27]

Наболее перспективной, по-видимому, является идея создания мощного реактора-размножителя с кассетами с насыпным сферическим микротопливом и карбидными сердечниками, умеренным давлением гелия в первом контуре (16 МПа) и инте-  [c.36]

В ИАЭ им. И. В. Курчатова и МО ЦКТИ им. И. И. Ползу-нова были выполнены оптимизационные расчеты по выбору геометрических размеров и относительной толщины покрытия из карбида кремния микротвэлов реактора БГР-1200. При увеличении толщины покрытая увеличивается глубина выгорания ядерного горючего, но происходит смягчение спектра нейтронов и уменьшение коэффициента воспроизводства. Оптимальная относительная толщина покрытия из карбида кремния, обеспечивающая достижение минимального времени удвоения лет), для сердечников из карбида уран—плутония получилась равной 0,05—0,07 диаметра сердечника [25].  [c.38]

Условные изображения сердечников магнитопроподов Правила выполнения чертежей печатных плат  [c.355]

Сравнение зависимостей (6-87) и (7-11) показывает, что для наружной поверхности нагрева коаксиального канала оребренный сердечник играет роль турбулизатора, эффект которого близок к эффекту спирального турбулм-затора, установленного в каналах круглого сечения.  [c.237]

Из изложенного следует, что лишь сплавы Э. З и Э4 являются феррит-ными. Магнитные характеристики у них получаются выше, но они более хрупки. Сплавы группы ЭЗ и Э4 называются трансформаторным железом, а Э1 и Э2 — динамной сталью. В соответствии с этим трансформаторное железо (основное применение — сердечники трансформаторов), обладающее более высокими магнитными свойствами, имеет более ннзкие механические свойства, чем динамная сталь (главное применение — детали динамомашин).  [c.548]

I — металли 1ескмй сердечник 2 — пла-вильный канал 3 — первичная обмотка 4 — огнеупорная футеровка  [c.172]

Ультразвуковая обработка (УЗО) материалов — разновидность механической обработки —основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат ультразвуковые генератора тока с частотой 16— 30 кГц. Инструмент получает колебания от ультразвукового преобразователя с сердечником из магнитострикционного материала. Эффектом магнитострикции обладают никель, железоникелевыв  [c.410]

В сердечнике из магнитоотрикцион-пого материала при наличии электромагнитного поля домены разворачиваются в направлении магнитных силовых линий, что вызывает изменение размера поперечного сечения сердечника и его длины. В переменном магнитном поле частота изменения длины сердечника равна частоте колебаний тока. При совпадении частоты колебаний тока с собственной частотой колебаний сердечника наступает резонанс и амплитуда колебаний торца сердечника достигает 2—10 мкм. Для увеличения амплитуды колебаний на сердечнике закрепляют резонансный волновод переменного поперечного сечения, что увеличивает амплитуду колебаний до 10— 60 мкм. На волноводе закрепляют рабочий инструмент — пуансон. Под пуансоном-инструментом устанавливают заготовку и в зону обработки поливом или иод давлением подают абразивную суспензию, состоящую из воды и абразивного материала. Из абразивных материалов используют карбиды бора или кремния и электрокорунд. Наибольшую производительность получают при использовании карбидов бора. Инструмент поджимают к заготовке силой 1 — 60 Н.  [c.411]

Процесс обработки заключается в том, что инструмент, колеблющийся с ультразвуковой частотой, ударяет но зернам абразива, лежащим на обрабатываемой поверхности, которые скалывают частицы материала заготовки (рис. 7.12). Заготовку 3 помещают в ваниу / под инструментом-пуансоном 4. Инструмент установлен на солно-воде 5, который закреплен в магнитострикционном сердечнике 7, смонтированном в кожухе 6, сквозь который прокачивают воду для охлаждения сердечника. Для возбуждения колебаний сердечника магнитострикционного преобразователя служит генератор 8 ультразвуковой частоты и источника постоянного тока 9. Абразивную суспензию 2 подают под давлением по патрубку 10 насосом II, забирающим суспензию из резервуара 12. Прокачивание суспензии насосом исключает оседание абразивного порошка на дне ваниы и обеспечивает подачу в зону обработки абразивного материала.  [c.411]


В качестве выходных электрических ЛЭ используются элек1рп-ческне реле (рнс. 5.22, а), магнитные пускатели или когггакторы, электромагнитные гндро-, пневмораспределители (или золотники). Основными частями таких ЛЭ являются электромагнитная катушка / с сердечником 2 и подвижное звено 3 с якорем 4. При пропускании тока в катушке (/=1) подвижное звено 3, поворачиваясь, занимает одно крайнее положение. При отсутствии тока в катушке (f = 0) рычаг 3 иод действием пластинчатой пружины 5 занимает  [c.182]

Кольцевой образец I (рис. 1.12) крепили соосно стволу 2 пневмогазового копра между фланцами 3 и 4. Нагружающий, боек 5 разгоняли по каналу ствола на поддоне 6 до необходимой скорости и наносили удар по передающему индентору 7. Сердечник S из сплава Д16, расположенный между передающим и опорным 9 инденторами, в процессе нагружения расширяется в радиальном направлении, что приводит к деформированию кольца. Опорный индентор расположен в массивной наковальне W, что обеспечивает неподвижность тыльной поверх-  [c.42]

Схема установки для измерения внутреннего трения и резонансной частоты колебаний образцов стали приведена на рис. 225. Она состоит из генератора звуковой частоты с диапазоном частот 20—200 гц II вибратора. Вибратор, в свою очередь, состоит из электромагнита 6 с сердечником, питающегося от генератора и возбуждающего колебания в планкодержателе 2, в который  [c.346]


Смотреть страницы где упоминается термин Сердечник : [c.63]    [c.63]    [c.64]    [c.336]    [c.336]    [c.587]    [c.270]    [c.280]    [c.272]    [c.11]    [c.11]    [c.12]    [c.13]    [c.14]    [c.15]    [c.16]    [c.237]    [c.541]    [c.43]   
Погрузочно-разгрузочные машины на железнодорожном транспорте Издание 3 (1986) -- [ c.16 ]



ПОИСК



Аморфные сердечников трансформаторов

Взаимная индуктивность и магнитный сердечник (К)

Длина сердечника

Дроссель со стальным сердечником, расче

Запоминающие системы на видеодисках ферритовых сердечниках

Изолировка сердечников полюсов

Катушки индуктивности без сердечников

Катушки с магнитными сердечниками

Катушки с сердечниками из немагнитных металлов

Катушки с ферромагнитным сердечником

Катушки с ферромагнитным сердечником расчет

Клинового ремня кордтканевый сердечник

Клинового ремня кордтканевый сердечник оболочка

Конденсаторные сердечники

Контроль сердечников магнитных усилителей с внутренней обратной связью

Крепление корневое сердечник

Крестовина с подвижным сердечнико

Магнитное поле внутри сердечника

Магнитное поле внутри сердечника трансформатора

Магнитный сердечник

Магнитный сердечник, сплавы

Норма I— — — крестовин с подвижными сердечниками

Обертка сердечников

Плавка стали в индукционных печах без железною сердечника

Поверхность катания сердечника и усовика

Пресс-формы гипсовые Для сердечников чашечных

Протекторная с сердечником

Пуансоны для выдавливания со скользящим сердечником

Пуансоны со скользящим сердечником

Расчеты катушек и трансформаторов с ферромагнитным сердечником

Регулярный режим бесконечно длинного двухсоставного цилиндра с металлическим сердечником и оболочкой из теплоизолятора

Сборка сердечников

Сердечник крестовины

Сердечник свечей зажигательны

Сердечник твэла

Сердечники - Выбор марки сталей в зависимости от магнитной индукции

Сердечники альсиферовые

Сердечники альсиферовые размеры

Сердечники для катушек прессованные

Сердечники для катушек прессованные машин - Выбор сталей

Сердечники из карбонильного железа, размеры

Сердечники пупиновские-Магнитные свойства

Сердечники статоров синхронных двигателей

Сердечники трансформаторов сварочных контактных

Сердечники ферритовые, размеры

Скашивание сердечников

Содержание углерода Влияние толщины сердечника

Станок для намотки микротороидальных сердечников

Схемы Сердечники якоря

Трансформатор с ферромагнитным сердечником, расчет

Трансформаторы Сердечники - Выбор марки сталей в зависимости от магнитной индукции

Трансформаторы — Сердечники Материалы

Условные изображения сердечников магнитопроводов (ГОСТ

Фильтр с заменяемым сердечником типа

Ц4 проволок с органическим сердечником (прядь

Электродвигатели Сердечники якоря



© 2025 Mash-xxl.info Реклама на сайте