Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор турбулентных движений Рейнольдсов

Параллельно с этим упрощенным подходом разработана усложненная математическая модель геофизической турбулентности, для которой, наряду с базисными гидродинамическими уравнениями для среднего движения, выведены эволюционные уравнения переноса для одноточечных вторых моментов пульсирующих в потоке термогидродинамических параметров многокомпонентной реагирующей газовой смеси. Модель включает в себя эволюционные уравнения переноса для составляющих тензора турбулентных напряжений Рейнольдса, составляющих векторов турбулентного потока тепла и турбулентной диффузии, уравнения переноса для турбулентной энергии и дисперсии пульсаций энтальпии среды, а также уравнения переноса для парных корреляций пульсаций энтальпии и состава смеси и смешанных парных корреляций пульсирующих концентраций отдельных компонентов смеси. Такой подход обеспечивает возможность расчета сложных течений многокомпонентных реагирующих газов с переменной плотностью, когда существенны диффузионный перенос турбулентности, конвективные члены и предыстория потока, и потому более простые модели (основанные на идее изотропных коэффициентов турбулентного обмена) оказываются неадекватными.  [c.313]


Традиционно турбулентное движение считается более хаотическим, чем ламинарное. Однако сравнение относит, степени упорядоченности стационарного турбулентного и ламинарного течений на основе У. о. к. 5-теоремы показывает, что турбулентное движение является в определ. смысле более упорядоченным, а переход от ламинарного течения к турбулентному служит примером неравновесного фазового перехода. Роль параметра порядка играет при этом тензор напряжений Рейнольдса, к-рые определяются коллективными движениями, возникающими из хаотического молекулярного движения. По У, о. к. 5-теоремы разность энтропий ламинарного и стационарною турбулентного течений определяется выражением  [c.230]

Теория Ротта турбулентного переноса импульса. Уравнения Рейнольдса, содержащие составляющие тензора турбулентных напряжений Огу = pv v i, дополняются системой уравнений, описывающих изменение этих напряжений. Для вывода уравнений движения можно воспользоваться общим методом составления уравнений для моментов, предложенным Келлером и Фридманом [Л. 1-23].  [c.75]

Так как тензор напряжений Рейнольдса в изотропном движении совершенно симметричен и условия в точке почти всегда известны, основными изучаемыми параметрами в изотропной турбулентности становятся корреляции или осредненные произведения компонентов скорости в двух точках. Следует особо подчеркнуть, что этот выбор двух точек (и, конечно, трех обычных компонентов ы, у и ш) представляет совершенно частный случай общей статистической теории непрерывной случайной переменной. В самой общей постановке средние значения случайной функции (в данном случае, поле скоростей) определяются распределением вероятности значений функции в п различных точках, и чем меньше должна быть возможная ошибка в средних величинах, тем больше должна быть величина п. Если придерживаться этой общей постановки, то, очевидно, анализ будет настолько сложен, что чрезвычайно замедлит развитие вопроса. Только при рассмотрении простейшего частного случая и использовании ми-нимального числа точек оказа-  [c.257]

Мы начнем с вывода осредненных дифференциальных уравнений баланса вещества, количества движения и энергии (опорный базис модели), предназначенных для описания развитых турбулентных течений многокомпонентной смеси химически активных газов, и проанализируем физический смысл отдельных членов этих уравнений ( ЗЛ). Особое внимание будет уделено выводу (традиционным способом, основанном на понятии пути смешения) замыкающих реологических соотношений для турбулентных потоков диффузии, тепла и тензора турбулентных напряжений Рейнольдса ( 3.3). Прогресс в развитии и применении полуэмпирических моделей турбулентности первого порядка замыкания (так называемых градиентных моделей) для однородной сжимаемой жидкости (см., например, Таунсенд, 1959 Бруяцкий, 1986 Ван Мигем, 1977)) позволил получить обобщения некоторых из подобных моделей на важный для целей геофизики и аэрономии случай свободных стратифицированных течений многокомпонентной реагирующей смеси с поперечным сдвигом скорости Маров, Колесниченко, 1987).  [c.114]


По современным представлениям уравнения Эйлера (1.2) описывают движение только идеальной (невязкой) среды. Уравнения Навье-Стокса (1.3) решены для частных случаев ламинарного движения вязкой среды. Уравнения О. Рейнольдса (1.4), полученные с целью описания турбулентного движения вязкой среды, отличаются от уравнений Навье-Стокса дополнительными членами, обусловленными турбулентным пульсацион-ньш движением. Дополнительные члены в уравнениях Рейнольдса рассматривают /125/как компоненты тензора напряжения, возникающего в  [c.15]

Как уже было указано в 1, турбулентное движение жидкости характеризуется неупорядоченностью траекторий отдельных частиц, наличием пульсаций скоростей и давлений во времени и интенсивным обменом всеми качествами между соседними областями течения. Всё это создаёт весьма большие трудности для теоретического изучения закономерностей турбулентного движения жидкости. Первая попытка теоретического подхода к изучению турбулентного движения жидкости была предпринята О. Рейнольдсом в цитированной выше работе. Им были установлены дифференциальные уравнения осреднённого движения жидкости и введён в рассмотрение тензор пульсационных напряжений.  [c.452]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]

Эти дополнительные напряжения называются кажущимися нйпряжениями турбулентного течения они складываются с напряжениями осредненного движения, с которыми мы познакомились при изучении ламинарных течений. Аналогичные дополнительные напряжения получаются и на площадках, перпендикулярных к осям г/ и 2. Совокупность всех девяти дополнительных напряжений называется тензором напряжений кажущегося турбулентного трения. Формулы (18.5) впервые были выведены О. Рейнольдсом из уравнений движения Навье — Стокса (см. следующий параграф).  [c.504]


Смотреть страницы где упоминается термин Тензор турбулентных движений Рейнольдсов : [c.17]    [c.124]    [c.228]    [c.219]    [c.433]    [c.212]    [c.219]    [c.332]    [c.171]    [c.154]   
Механика жидкости и газа Издание3 (1970) -- [ c.690 ]



ПОИСК



Движение турбулентное

Рейнольдс

Рейнольдса для турбулентного

Рейнольдса для турбулентного движения



© 2025 Mash-xxl.info Реклама на сайте