Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая напряженность

Для такой мощности применяют только камерные топки. Тепловая мощность топки равна 1200/0,4 = 3000 МВт. При тепловом напряжении объем 150 КВт/м 1/ = = 20 000 м1  [c.215]

При закалке изделий в горячей воде вследствие их медленного охлаждения при высоких и быстрого при низких температурах тепловые напряжения получаются низкими, а наиболее опасные структурные — высокими, что может вызвать образование трещин.  [c.205]


Радиальные подшипники. Расчет на нагрев подшипников, работающих в режиме граничного трения, сводится к определению величины условного коэффициента qv, который считается основной характеристикой тепловой напряженности подшипниковой сборочной единицы.  [c.322]

МПа м/с= 1,8 10 Па м/с, т. е. условия q< q и qv< 1(/и выдержаны с большим запасом. Может создаться впечатление, что рассчитываемый подшипник вполне надежен, однако тепловой расчет обнаружил значительную тепловую напряженность подшипника. Поэто.му необходимо выполнить поверхность корпуса ребристой и ввести обдув. Элементарный расчет но qv не содержит фактически конкретных показателей тепловой напряженности, что на практике нередко приводит к неожиданным осложнениям — подшипник перегревается и выходит нз строя, хотя значения q vi qv далеко не достигают предельных величин, приводимых в справочных таблицах.  [c.327]

Плотность ситаллов 2,5 — 3 кгс/дм , теплоемкость 0,2 кал/(кг-°С), теплопроводность 2 — 4 кал/(м-ч °С). Модуль нормальной упругости 7000— 15 000 кгс/мм . Микротвердость 700-1200 кгс/мм . Коэффициент линейного расширения в зависимости от химического состава и строения ситалла колеблется от 30-Ю до 0. Таким образом, имеется возможность изготовлять изделия, не меняющие линейных размеров с изменением температуры и, следовательно, не подверженные тепловым напряжениям. Есть ситаллы с отрицательным коэффициентом линейного удлинения до —8-10 , размеры которых уменьшаются с повышением температуры.  [c.191]

Если материал при колебаниях температуры лишен возможности свободно расширяться или сжиматься, то в нем возникают тепловые напряжения.  [c.360]

В качестве критерия тепловой напряженности подшипников нередко применяют величину ки (произведение удельной нагрузки, кгс/см, на окружную скорость вала, м/с). Предельны.мн считаются значения кг = 400 -г 600.  [c.361]

Исследование прочности высоконапряженных элементов двигателей внутреннего сгорания, подвергнутых действию силовых и тепловых напряжений.  [c.665]

В основе унификации рядов деталей, узлов, агрегатов, машин и приборов лежит их конструктивное подобие, которое определяется общностью рабочего процесса, условий работы изделий, т. е. общностью эксплуатационных требований. К ним, например, относятся характер нагрузки и режим ее изменения, температурные условия, силовая и тепловая напряженность и др.  [c.50]

В статических задачах термоупругости температурное поле является стационарным. Задачи, в которых не учитывают эффект связанности температурного поля деформаций, а также силы инерции, обусловленные нестационарным температурным полем, называют квазистатическими. В этих задачах тепловые напряжения в упругом теле в рассматриваемый момент времени определяются при известном температурном поле (время здесь является параметром). При решении задач термоупругости в качестве основных неизвестных принимают компоненты вектора перемещений или тензора напряжений. В соответствии с этим различают постановку задачи термоупругости в перемещениях или в напряжениях. Во всех случаях, если это особо не оговаривается, упругие и термические коэффициенты предполагают постоянными.  [c.91]


Простейшими плоскими задачами термоупругости, имеющими большое практическое значение, являются задачи о тепловых напряжениях в цилиндре и диске при плоском осесимметричном температурном поле.  [c.92]

Определить тепловые напряжения для тонкостенной трубы, у которой 6 = 25 см, а = 22 см,  [c.126]

Найти тепловые напряжения в полой сфере, нагретой симметрично относительно центра, считая тепловое состояние сферы стационарным. Данные а = 10 см, 6 = 25 см, = 150°.  [c.127]

Для слоевых топок основными тепловыми характеристиками являются тепловое напряжение площади колосниковой решетки (зеркала горения), тепловое напряжение топочного объема и кпд топки, для камерных топок — тепловое напряжение топочного объема и кпд топки.  [c.49]

Тепловое напряжение (кВт/м ) площади колосниковой решетки  [c.49]

Тепловое напряжение (кВт/м ) топочного объема  [c.49]

Задача 2.30. Определить площадь колосниковой решетки, которую требуется установить под вертикально-водотрубным котлом паропроизводительностью Z) = 6,l кг/с, работающим на подмосковном угле марки Б2 состава С = 28,7% Н = 2,2% SS = 2,7% N = 0,6% 0 = 8,6% А = 25,2% И = 32,0%, если известны температура топлива при входе в топку tj = 20° , давление перегретого пара рп.а = 4 МПа, температура перегретого пара / п = 420°С, температура питательной воды 180°С, кпд котло-агрегата (брутто) >/ а = 87%, величина непрерывной продувки Р = 4% и тепловое напряжение площади колосниковой решетки е/Л=1170 kBt/m".  [c.50]

Задача 2.31. Определить объем топочного пространства, предназначенного для вертикально-водотрубного котла паропроизводительностью Z)=13,8 кг/с, при работе на малосернистом мазуте состава С = 84,65% Н =11,7% S5 = 0,3% О =0,3% = 0,05% W = 3,0%, если известны температура подогрева мазута т = 90°С, давление перегретого пара — МПа, температура перегретого пара = 250°С, температура питательной воды /п.в=100°С, кпд котлоагрегата (брутто) а = 88% величина непрерывной продувки Р=3% и тепловое напряжение топочного объема 2/Иг = 490 кВт/м .  [c.50]

D — 5,9 кг/с, если известны давление перегретого пара Ра.а=1А МПа, температура перегретого пара ,i = 250° , температура питательной воды / .,= 120°С, кпд котлоагрегата (брутто) / а=86,5%, тепловое напряжение площади колосниковой решетки QjR= 1260 кВт/м , потери теплоты от химической неполноты сгорания топлива 2з = 107,5 кДж/кг и потери теплоты от механической неполноты сгорания топлива Й4= 1290 кДж/кг. Котельный агрегат работает на кизелов-ском угле марки Г с низшей теплотой сгорания горючей массы 2в = 31 349 кДж/кг, содержание в топливе золы = 31% и влаги И = 6%.  [c.52]

Задача 2.36. В топке водогрейного котла сжигается челябинский уголь марки БЗ с низшей теплотой сгорания Ql = l3 997 кДж/кг. Определить тепловое напряжение площади колосниковой решетки, если известны кпд котлоагрегата (брутто) >/ Р = 85%, расход воды Л/, = 65 кг/с, температура воды, поступающей в котел, t = 70° , температура воды, выходящей из него, /2=150°С и площадь колосниковой решетки Л= 15 м .  [c.52]

Тепловое напряжение топочного пространства в этом случае может достигать 5... 10 мВт/м .  [c.238]

Основным показателем, характеризующим работу топки, является тепловое напряжение топочного объекта (кВт/м ), представляющее собой отношение  [c.244]

Для топок слоевого сжигания необходимой характеристикой, кроме того, является тепловое напряжение зеркала горения, кВт/м  [c.244]

Камерные топки для сжигания газообразного и жидкого топлив. Если сжигается газовое или жидкое топливо (или газовое вместе с жидким), то топочная камера выполняется с горизонтальным или слегка наклонным подом. Тепловое напряжение топочного объема при сжигании газового и жидкого топлив одно и то же, поэтому в камерных топках для сжигания газа можно сжигать и мазут. Форсунки для подачи и распыления жидкого топлива, а также газовые горелки располагаются фронтально, встречно или по углам топки.  [c.245]


Процесс смешивания пыли с воздухом происходит в горелках. Топливная пыль, попадая в топку, нагревается, высушивается, газифицируется и сгорают летучие и кокс. Так как кокс горит во взвешенном состоянии и дольше, чем летучие, то объем топочной камеры при факельном горении значительно больше, чем при слоевом. Поэтому тепловое напряжение топочного объема топки для сжигания пылевидного топлива меньше, чем для слоевых топок. Процесс горения топлива в камерной топке интенсифицируют путем турбулизации аэропыли и использования горячего воздуха (90...400 °С).  [c.251]

Парогенератор спроектирован на тепловое напряжение радиационной поверхности нагрева, равное 58,2 кВт/м , Такое относительно низкое теплонапряжение в топке достигается резким снижением теоретической температуры горения в результате сжигания природного газа или мазута при большом коэффициенте избытка воздуха, равного 1,7.  [c.289]

Еще в более тяжелых условиях работы находится сталь в штампах (прессформах) для литья под давлением. Нагрев рабочей поверхности формы расплавленным металлом и охлаждение водой внутренних частей формы вызывают значительные тепловые напряжения. Сталь, применяемая для пресс-форм, должна быть также достаточно износостойкой, иметь высокие механические свойства в нагретом состоянии и хоро-  [c.432]

Только одни тепловые напряжения нозпнкают и тех случаях, к01 ля отсут-  [c.212]

Скорость охлаждения после отпуска оказывает большое влияние па величину остаточных напряжений. Чем медленнее охлаждение, тем меиьи1е остаточные напряжения. Быстрое охлаждение в воде от 600 С создает новые тепловые напряжения. Охлаждение после отпуска на воздухе дает напряжения на поверхности изделия в 7 раз меньшие, а в масле в 2,5 раза меньшие по сравнению с напряжениями при охлаждении в воде. По этой причине изделия сложной формы во избежание их коробления после отпуска при высоких темпера-ту )ах следует охлаждать медленно, а изделия из легирован1П51х сталей, склонных к обратимой отпускной хрупкости, после отпуска ири 500- 650 RO всех случаях следует охлаждать быстро.  [c.216]

Если этот крптери одинаков, то у всех геометрически подобных двигателей одинаковы термодинамический, механический и эффективный КПД (следовательно, н удельный расход топлива), тепловая напряженность (теплопереход на единицу охлаждающей поверхности), удельная мощность, напряжения от тазовых н Инерционных сил, удельные нагрузки на ПОДШИПНИКИ, конструкционная. масса двшателя (масса, отнесенная к сумме квадратов диа-мс1ра цилиндра).  [c.56]

Расчет равнопрочных быстроизнашивающихся дисков сложен, так как в ряде случаев приходится учитывать тепловые Напряжения, возникающие от неравномерности температурного поля диска. Во многих случаях картина осложняется явлением Теплового удара, вызывае.мого на некоторых режимах работЬг неустаНовившими ся потоками тепла от периферии к центру или наоборот.  [c.111]

Торможение формы. Тепловые напряжения, вызванные торможением фор.мьг, возникают при неравномерном нагреве детали, когда отдельные волокна материала лишены возможности по конфигурации детали расширяться в соответствии с законом тепловой деформации. В отличие от торможения с.межности здесь напряжения возникают только при перепаде температур в теле детали (при стационарном тепловом потоке, когда тепло переходит от горячих участков к более холодным, или при пеустановившемся тепловом потоке, например при тепловом ударе, когда волна тепла распространяется по телу детали).  [c.366]

Уменьшение тепловых напряжений. Способы снижения тепловых напряжений, вызываемых торможением формы, заключаются прежде всего в устранении первопричины — неравномерности температурного поля по сечению детали. Иногда этого удается достичь рацйОйальным охлаждением детали. Так, для роторов турбин целесообразно ВВОДИТЬ охлаждеНйе их периферийной части. Охлаждение центральной части ротора нерационально, так как понижение температуры может вызвать на рабочих режимах увеличение растягивающих напряжений в ступице.  [c.375]

В специальной литературе приведены расчеты, показывающие, что равенство параметров силовой и тепловой напряженности, например, деталей цилиндропоршневой группы обеспечивается, когда главным параметром является диаметр цилиндра D (рис. 3.1, а). Это дает возможность создать ряд геометрически подобных двигателей с соотношением S/D = onst, соблюдая указанные критерии подобия рабочего процесса. При этом у всех геометрически подобных двигателей будут одинаковые термодинамический, механический и эффективный КПД (а следовательно, и расход топлива), тепловая и силовая напряженность и мощность. Градации толщины стенки цилиндра h будут такими же, как и градации D.  [c.47]

Высокая те.мпература, резкое или частое ее изменение являются причинами, вызывающими термические напряжения п покрытии, подлож,се или в систе.ме металл — покрытие. В общем случае величина этих напряжений зависит от градиента температуры, формы тела. 1Коэффицнента теплового расширения, модуля упругости, теплопроводности, коэффициента Пуассона и других характеристик конструкции. Способность материала или системы материалов сопротивляться действию тепловых напряжений характеризует его работсоспособносгь и долговечность в условиях воздействия высоких температур.  [c.177]

Было обнаружено, что наибольший вклад в повреждаемость труб вносит не постоянная тепловая нагрузка в процессе эксплуатации, а периодически повторяемый паровыжиг, нри котором материал труб подвергается локальным кратковременным тепловым напряжениям, иногда на два порядка превышающим предел прочности. Исследования показали, что именно эти  [c.330]

Улитко А, Ф. К теории колебаний пьезокерамических тел. — В кн. Тепловые напряжения в элементах конструкций. Вып. 15. — Киев Наукова думка, 1975.  [c.682]


Задача 2.32. Определить площадь колосниковой решетки, объем топочного пространства и кцд топки котельного агрегата паропроизводительностью /) = 5,45 кг/с, если известны давление перегретого пара Ри.и= А МПа, температура перегретого пара /п.п = 280°С, температура питательной воды t = 100°С, кпд котло-агрюгата (брутто) rjl = i6%, величина непрерывной продувки Р = 3%, тепловое напряжение площади колосников ой решетки Q/R=1015 кВт/м тепловое напряжение топочного объема Q/Ft=350 кВт/м , потери теплоты от химической неполноты сгорания топлива з = 0,5% и потери теплоты от механической неполноты сгорания топлива <74 = 5,5%. Котельный агрегат работает на кузнещсом угле марки Т с низшей теплотой сгорания горючей массы 2 =34 345 кДж/кг, содержание в топливе золы = 16,8% и влаги И = 6,5%.  [c.50]

Задача 2.33. В топке котельного агрегата паропроизводите-льностью Z) = 7,05 кг/с сжигается природный газ Саратовского месторождения состава С02 = 0,8% СН4 = 84,5% QH6 = 3,8% СзН8 = 1,9% С4Н,о = 0,9% sH,2 = 0,3% N2 = 7,8%. Определить объем топочного пространства и кпд топки, если известны давление перегретого пара р п=1,4 МПа, температура перегретого пара /п, = 280°С, температура питательной воды n.B=HO° , кпд котлоагрегата (брутто) / а = 91%, величина непрерывной продувки Р=4%, тепловое напряжение топочного объема Q/Vj = 3l0 кВт/м , потери теплоты от химической неполноты сгорания топлива з = 1,2% и потери теплоты от механической неполноты сгорания топлива q — 1°/о.  [c.51]

Задача 2.35. Определить тепловое напряжение топочного объема камерной топки котельного агрегата паропроизво-дительностью D = 2,5 кг/с, если известны давление перегретого параРа.а= А МПа, температура перегретого пара п.п = 250°С, температура питательной воды Гп.а = Ю0°С, кпд котлоагрегата (брутто) j a = 90%, величина непрерывной продувки Р=4% и объем топочного пространства F = 24 м . Котельный агрегат работает на высокосернистом мазуте с низшей теплотой сгорания горючей массы Ql=40 090 кДж/кг, содержание в топливе золы /1 =0,1 % и влаги = 3%. Температура подогрева мазута /, = 90 С.  [c.52]

Задача 2.37. В шахтно-мельничной топке сжигается донецкий уголь марки Г с низшей теплотой сгорания 6 = 22 024 кДж/кг. Определить площадь колосниковой решетки, объем поточного пространства и кпд топки, если тепловое напряжение площади колосниковой решетки 0Л=127О кВт/м , тепловое напряжение топочного объема 2/К = 280 кВт/м , расход топлива 5 = 0,665 кг/с, потери теплоты от химической неполноты сгорания топлива 3 = 0,6% и потери теплоты от механической неполноты сгорания топлива 4 = 4,4%.  [c.52]

ТГысокой эффективностью отличаются трубчатые печи с излучающими стенками. В этих печах боковые стенки составляются из беспламенных панельных горелок, позволяющих сжигать топливо с малым коэффициентом избытка воздуха без потерь от химической неполноты сгорания и при больших тепловых напряжениях топочного объема (рис. 4.5). Необходимое для горения количество воздуха инжектируется топливным газом непосредственно из атмосферы. Газовоздушная смесь поступает через распределительную камеру горелки в керамические туннели, равномерно расположенные по всей поверхности горелки  [c.259]

В камерных печах применяют жидкое и газообразное топливо. Форсунка для распыливания стоков располагается в стенке цилиндрической камеры. К недостаткам камерных печей относится низкое тепловое напряжение топочных объемов, не превышающее 2...3 МВт/м . Кроме того, поддержание высоких температур в лечи затруднено вследствие балластирования процесса горения выбросами, часто разбавленными инертными газами. Понижение температуры в топочной камере ведет к неполному окислению органических соединений.  [c.269]

Плав Na l стекает по стенке к поду, откуда и удаляется через специальные стоки. Производительность печи по кубовому остатку 600 кг/ч. Тепловое напряжение печи 1512 кВг/.м . Температура дымовых газов на выходе из печи порядка I ООО С. Циклонные печи относятся к печам непрерывн010 действия.  [c.272]


Смотреть страницы где упоминается термин Тепловая напряженность : [c.90]    [c.212]    [c.360]    [c.361]    [c.271]   
Смотреть главы в:

Автомобильные двигатели Издание 2  -> Тепловая напряженность


Автомобильные двигатели Издание 2 (1977) -- [ c.230 , c.234 ]



ПОИСК



Исследование теплового и напряженно-деформированного состояния цилиндровых втулок двигателей внутреннего сгорания

Камеры сгорания, составные части тепловая напряженность

Напряженно

Напряженность

Расчетное исследование теплового и напряженно-деформированного состояния головки составного поршня дизеля типа Расчетное исследование влияния конструктивных особенностей составного поршня высокофорсированного дизеля типа 1 на его тепловое и напряженно-деформированное состояние

Расчетное исследование теплового и напряженно-деформированного состояния поршня мощного судового малооборотного дизеля типа ДКРН

Расчетное исследование теплового и напряженно-деформированного состояния цилиндровой втулки дизеля типа Список литературы

Расчетное исследование теплового и напряженно-деформированного состояния цилиндровой втулки подвесного дизеля типа ЧН

Расчетное исследование теплового н напряженно-деформированного состояния цельного поршня дизеля ЧН

Температурное состояние и тепловая напряженность клапана

Тепловая напряженность зонах деталей дизеля

Тепловая напряженность и расчет теплового режима замкнутых гидромуфт

Тепловой баланс и тепловая напряженность деталей двигателя



© 2025 Mash-xxl.info Реклама на сайте