Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Запас деформациям

О — диаметр установочной поверхности в см г — запас деформации, обеспечивающий натяг при зажиме деталей, в см.  [c.125]

Запас деформации г представляет собой разность между допустимой деформацией втулки AO ,o и максимальным зазором в сопряжении  [c.125]

Для более сложных материалов, которые обладают некоторой степенью упругости, внутренняя энергия может обратимо запасаться вследствие деформации, и энергетическое уравнение состояния необходимо содержит кинематические независимые переменные. Очень немного известно о форме энергетического уравнения состояния для реальных упругих жидкостей, т. е. о приемлемых определяющих предположениях относительно внутренней энергии. Это положение ставит ряд проблем, которые будут подробно обсуждены в последних главах. Вообще говоря, можно установить, что механика неньютоновских жидкостей занимается преимущественно рассмотрением импульса, и в настоящее время принцип сохранения энергии может дать лишь незначительную информацию.  [c.15]


Холодная деформация может проводиться до определенных пределов, так как при исчезновении запаса пластичности возникает разрушение металлов и сплавов. Поэтому рекристаллизационный отжиг следует проводить при определенных стадиях холодной деформации.  [c.87]

Величину запасов устанавливают расчетом размерных цепей и тепловых деформаций системы. Наибольшие запасы следует предусматривать на участках сопряжения с черными литыми поверхностями, где колебания размеров особенно велики (для отливок средних размеров и средней точности литья запасы назначают в пределах 3—4 мм).  [c.591]

Для заклепок, устанавливаемых вхолодную, расчет на срез более обоснован. Однако и здесь существуют трудно учитываемые факторы (например, величина прилагаемого к заклепке усилия и степень пластической деформации, определяющая плотность прилегания заклепки к стенкам отверстия). Допускаемые напряжения принимают равными пределу прочности материала заклепок на срез и смятие с коэффициентом запаса 3 — 4. Кроме того, учитывают вид обработки отверстия.  [c.203]

Для того чтобы деталь обладала необходимой надежностью и работала безотказно, необходимо создать требуемый запас прочности по отношению к экспериментально определенным величинам предельных напряжений, при которых может разрушиться деталь или возникнуть пластическая деформация.  [c.139]

Определив коэффициент запаса прочности по сопротивлению усталости, необходимо сравнить его с коэффициентом запаса по сопротивлению пластическим деформациям. Последние определяются формулами  [c.231]

Расчет по предельному состоянию с определенным запасом проч ности не гарантирует от появления местных пластических дефор маций. Последнее еще допустимо при постоянных нагрузках, кото рые имеют место преимущественно в строительных конструкциях При переменных нагрузках, на которые чаще всего приходится рас считывать машиностроительные конструкции, появление пласти ческих деформаций во многих случаях недопустимо. Поэтому в та ких случаях следует вести расчет по допускаемым напряжениям  [c.501]

Коэффициент запаса на устойчивость всегда принимают несколько больше основного коэффициента запаса на прочность (Пу > п). Это делается потому, что для центрально сжатых стержней ряд обстоятельств, неизбежных на практике (эксцентриситет приложения сжимающих сил, начальная кривизна и неоднородность стержня), способствуют продольному изгибу, в то время как при других видах деформации эти обстоятельства почти не сказываются. Коэффициент запаса устойчивости для сталей выбирают в пределах 1,8—3,0 для чугуна — в пределах 5,0—5,5 для дерева — 2,8. .. 3,2. Заметим, что меньшие значения п . принимают при большей гибкости.  [c.513]


В случае простых видов деформации при изменении напряжений в детали по симметричному циклу запас прочности при действии, например, нормальных напряжений можно вычислить по формуле  [c.610]

Вообще говоря, Мд обычно не известен. Известна кинетическая энергия То соответствующей массы маховика, вызывающей ударное кручение. Так, например, при резком торможении вала, несущего маховик на некотором расстоянии от места торможения, участок вала между тормозом и маховиком будет испытывать ударное кручение. При этом, зная начальный запас энергии маховика и конечный после его торможения, можно найти ту часть кинетической энергии Тд, которая превращается в потенциальную энергию деформации С/д вала. Определяя возникающие в этом случае напряжения, их выражают не через действующий при этом крутящий момент /Ид, а через энергию деформации или равную ей кинетическую энергию.  [c.640]

Расчеты на прочность при постоянных напряжениях деталей из пластичных материалов обычно производят согласно условию отсутствия общих пластических деформаций, т. е. обеспечивают требуемый коэффициент запаса гю отношению к пределу текучести материала. Коэффициенты концентрации напряжений в расчеты не вводят, так как пики напряжений сглаживаются вследствие местных пластических деформаций, не опасных для прочности детали.  [c.12]

При кручении внешние моменты совершают работу вследствие поворота сечений, к которым они приложены. Эта работа расходуется на создание запаса потенциальной энергии деформации, численно равной работе внутренних сил.  [c.120]

Кроме коэффициента запаса прочности по сопротивлению усталости необходимо вычислять коэффициент запаса по сопротивлению пластическим деформациям, так как точка 5 может оказаться выще линии Л4 . Коэффициент запаса прочности по сопротивлению пластическим деформациям вычисляется по формулам  [c.320]

Во многих случаях более правильно расчеты на прочность при действии статических нагрузок вести с учетом пластических деформаций, как показано в настоящей главе, и запас прочности вычислить как отношение предельной нагрузки к рабочей (фактически действующей) Р  [c.335]

Местная геометрическая и энергетическая неравномерность в решетке вокруг точечного несовершенства приводит к тому, что при наличии внешних энергетических воздействий (нагрев, деформация, облучение и т. д.) дефектные места выходят из занимаемого положения и начинают перемещаться, уменьшая запас внутренней энергии системы.  [c.468]

Предположим, что пластичность этого участка шва характеризуется кривой П. Темп деформации, вызываемый процессами свободной усадки и деформациями формоизменения Ссв — ф, меньше, чем предельный, и, следовательно существует определенный запас пластических свойств, которые нужно определить. Задавая дополнительный темп машинной деформации v, находят тот предельный, который приводит к исчерпанию запаса пластичности и будет критерием запаса технологической прочности.  [c.484]

Как уже указывалось, темп деформации в т.и.х. зависит не только от химического состава металла и режима сварки. В значительной степени он определяется и конструктивными особенностями самого изделия, его способностью деформироваться под действием теплового поля или напряжений, возникающих в сварном соединении. Для того чтобы оценить влияние конструктивных факторов самого узла на технологическую прочность сварного соединения, иногда используют так называемый метод эталонного ряда. Для этого конструкцию сваривают с применением электродов или сварочной проволоки и флюсов, запас технологической прочности которых заранее определен. Набор таких материалов с различными показателями v по степени убывания или возрастания и называют эталонным рядом. Подобрав из серии эталонного ряда сварочные материалы, исключающие появление трещин, можно определить требования по запасу технологической прочности, необходимые для бездефектной сварки конструкций данного типа.  [c.486]

При конструировании необходимо выявить функциональные параметры, от которых главным образом зависят значения и допускаемый диапазон отклонений эксплуатационных показателей машины. Теоретически и экспериментально на макетах, моделях и опытных образцах следует установить возможные изменения функциональных параметров во времени (в результате износа, пластической деформации, термоциклических воздействий, изменения структуры и старения материала, коррозии и т. д.), найти связь и степень влияния этих параметров и их отклонений на эксплуатационные показатели нового изделия и в процессе его длительной эксплуатации. Зная эти связи и допуски на эксплуатационные показатели изделий, можно определить допускаемые отклонения функциональных параметров и рассчитать посадки для ответственных соединений. Применяют и другой метод используя установленные связи, определяют отклонения эксплуатационных показателей при выбранных допусках функциональных параметров. При расчете точности функциональных параметров необходимо создавать гарантированный запас работоспособности изделий, который обеспечит сохранение эксплуатационных показателей к концу срока их эксплуатации в заданных пределах. Необходимо также проводить оптимизацию допусков, устанавливая меньшие допуски для функциональных параметров, погрешности которых наиболее сильно влияют на эксплуатационные показатели изделий. Установление связей эксплуатационных показателей с функциональными параметрами и независимое изготовление деталей и составных частей по этим параметрам с точностью, определенной исходя из допускаемых отклонений эксплуатационных показателей изделий в конце срока их службы, — одно из главных условий обеспечения функциональной взаимозаменяемости.  [c.19]


Как определяется запас усталостной прочности детали при простых видах деформации  [c.100]

При выборе подшипника по статической грузоподъемности (при я << 10 об/мин) следует принимать некоторый запас грузоподъемности по сравнению с величиной Со (кгс), что гарантирует большую надежность работы узла. При легких нагрузках, когда не лимитируют габариты и вес, можно довести запас грузоподъемности до трехкратного. В случае же кратковременной работы и небольших пластических деформаций можно принять I = 0,5-н0,75, при этом необходима последующая экспериментальная проверка работоспособности узла. Итак,  [c.402]

Во втором случае следует выбирать материал, хорошо выдерживаю-Ш.ИЙ ударную нагрузку (кремнистые стали). Расчет производят по энергии, которая должна быть накоплена пружиной при деформации ударом. Коэффициент запаса выбирают в соответствии с условиями удара и требуемым сроком службы пружины [6, 14].  [c.703]

Предохранительный клапан- диаметром 7,5 см, прижатый пру-исиной дод некоторым начальным усилием должен открываться при давлении на клапан в 8 ат, после того как пружина сожмется на 2 см. У полностью разгруженной пружины расстояние между витками в свету равно 5 мм, а при открытом клапане пружина сохраняет запас деформации в 16 мм. Средний диаметр витков пружины 6 см, а диаметр стального стержня пружины 12 мм. Определить необходимое число витков, величину начального усилия и наибольшее касательное напряжение в стержне пружины.  [c.100]

Приведенные выше значения коэффициента трения, свидетельствующие о значительных запасах самоторможения, справедливы только при статических нагрузках. При переменных нагрузках н особенно при вибрациях вследствие взаимных микроемещений понерхиостей трения (например, в результате радиальных упругих деформаций гайки и стержня винта) коэффициент трения суш,ественно снижается (до 0,02 и ниже). Условие самоторможения нарушается. Происходит самоотвинчивание.  [c.24]

Проверка валов на кратковременную перегрузку. Кратковременные перегрузки (пиковые нагрузки) могут возникнуть в деталях передач, однако при расчете валов они не учитыва.ются, так как общее число циклов нагружений при перегрузках сравнительно незначительное и в малой степени отражается на усталостной прочности вала. Чтобы исключить опасность малых нластическнх деформаций в этих условиях следует вал проверить по запасу статической прочности  [c.282]

Понятие равнопрочности применимо и к нескольким деталям и к конструкции в целом. Равнопрочными являются конструкции, детали которых имеют одинаковый запас надежности по отношению к действующим на них нагрузкам. Это правило ра,спространяется и йа детали, выполненные из различных материалов. Так, равнопрочными являются стальная деталь с напряжением 20 кгс/мм при пределе текучести СТо,2 = 60 кгс/мм и деталь из алюминиевого сплава с напряжением 10 кгс/мм при с о,2 = 30 кгс/мм . В обоих случаях коэффициент надезкности равен 3. Это значит, что обе детали одновременно придут в состояние пластической деформации при повышении втрое действующих на них нагрузок. Независимо от этого каждая из сравниваемых деталей может еще обладать равнопрочностью в указанном выше смысле, т. е. иметь одинаковый уровень напряжений во всех сечениях.- —  [c.107]

Повышенные напряжения растяжения в ленте снижают жесткость, станины в направлении рабочих нагрузок. Деформация скреплвкшойжтанинй под рабочей нагрузкой -при одинаковом запасе прочности гфевыШет  [c.405]

Абсолютная деформация Д = е з з =i 0,048 20 = 0,96 мм. С запасом на колебан вытяжки и сил затяжки прщшмаем /э = 1,5 м.м.  [c.447]

В конструкции концевой цапфы, опертой в бронзовой втулКе (рис. 440, а), торец цапфы не доходит до торца втулки при износе на участке з втулки появляется ступенька, мешающая цапфе самоуста-.навливаться в продольном Направлении. Неправильно также вьшолнять осевые размеры по номиналу производственные ошибки, неточность монтажа, а также тепловые деформации системы могут вызвать смещение торца цапфы б внутрь подшипника с тем же конечным результатом что и в предыдущем случае. В правильной конструкции в цапфа вьшущена нз втулки с запасом, обеспечивающим выйупание торца цапфы из подшипника при всех возможных колебаниях продольнь гх размеров системы.  [c.599]

Общие сведения о расчетах на прочность. Одной из важнейших задач инженерного расчета является оценка прочности детали по известному напряженному состоянию в опасной точке поперечного сечения. Для простых видов деформаций эта задача решается сравнительно просто по известным формулам определяют максимальные напряжения, которые затем сравнивают с опасными (предельными) для данного материала напряжениями, устанавливаемыми экспериментально. При этом прочность детали считается обеспеченной, если максимальные напряжения не превышают предельных значений. В случае необходимости реализовать требуемый коэффи-циегт запаса прочности максимальные напряжения сравнивают с допускаемыми.  [c.195]

Материалы. Моментные пружины являются ответственными деталями механизмов, поэтому к их материалам предъявляется ряд особых требований а) постоянство упругих свойств во времени и в заданном градиенте температур б) минимальная величина остаточных деформаций в) строгая пропорциональность между создаваемым противодействующим моментом и углом закручивания г) антимагнитность, антикоррозионность и электропроводность (для специальных приборов). Для выполнения требований по пунктам а), б), в) принимают большие запасы прочности, т. е. отношение предела прочности материала к максимальным напряжениям  [c.475]

До момента наступления критического состояния упругие деформации по величине весьма незначительны и нарастание их происходит почти незаметно для глаза. Но с момента наступления критического состояния до момента разрушения остаточные деформации нарастают крайне быстро, и практически нет времени принять меры по предотвра-щ,ению грозящей катастрофы. Таким образом, при расчете на устойчивость критическая нагрузка подобна разрушающей при расчете иа прочность. Для обеспечения определенного запаса устойчивости необходимо, чтобы удовлетворялось условие  [c.502]


Однако определение силы удара (/) по формуле (22.1) весьма затруднительно, так как не известно время соударения, т. е. время, в течение которого скорость движущегося тела снижается от своего максимального значения в момент соприкосновения с ударяемым телом (начало удара) до нуля после деформации последнего (конец удара). В связи с указанными труд-1ЮСТЯМИ, определяя напряжения в элементах упругих систем, вызываемые действием ударных нагрузок (динамические напряжения), в инженерной практике обычно пользуются так называемым энергетическим методом, основанным на законе сохранения энергии. Согласно этому методу полагают, что при соударении движущихся тел уменьшение запаса кинетической энергии их равно увеличению потенциальной энергии. деформации соударяющихся упругих тел.  [c.626]

Удар стержня о жесткую плиту.В некоторых случаях приходится определять напряжения в ударяющем теле, в частности, рассчитывая шток ковочного молота. При этом наиболее опасным для прочности штока является момент окончания ковки,когда проковываемое изделие почти не деформируется и вся энергия удара поглощается штоком. Схематически этот случай показан на рис. 588, где некоторый призматический стержень длиной I поперечного сечения F и веса Q падает с высоты Н и ударяется о жесткую плиту А. Поскольку плита не деформируется, то весь запас кинетической энергии Tq = QH, накогг лен1Юй падающим стержнем к моменту соударения, целиком перейдет в потенциальную энергию деформации падающего стержня.  [c.638]

Коэффициент запаса по отношению к пределу текучести материала при расчете деталей из пластичных материалов под действием постоянных напряжений выбирают минимальным при достаточно точных расчетах, т. е. равным 1,.3,..1,5. Это возможно в связи с тем, что при перегрузках, превышающих предел текучести, пластические деформации весьма малы (особенно при сильно неоднородных напряженных состояниях деталей) и обычно не вызывают выхода детали из строя. Коэффициенты запаса прочности увеличивают только для деталей из материалов с большим отношением Ог/Яв, для которых иначе получается недостаточный запас по отношению к временному со-противле1шю.  [c.13]

Величина коэффициента запаса зависит и от свойств материала. В случае пластичного материала, запас по пределу текучести может быть менышш, чем в случае расчета детали из хрупкого материала. Это является достаточно очевидным, поскольку хрупкий материал более чувствителен к различным случайным повреждениям и неожиданным дефектам производства. Кроме того, случайное повышение напряжений для пластичного материала может вызвать только небольшие остаточные деформации, для хрупкого же материала последует прямое разрушение.  [c.76]

Сплав, характеризуемый кривой < , трещины не образует более того, он имеет еще и некоторый запас пластичности ДЯ. Таким образом, чем меньше темп деформации в т.и.х., тем меньше вероятность образования горячих трещин. Темп деформации, характеризуемый наклоном кривой е к оси температур и кривизной самой кривой, зависит от усадки сплава и деформаций, развивающихся в околошовпой зоне. Следует иметь в виду, что деформация в сварном шве, обусловленная кристаллизационными и структурными процессами при остывании, распределяется по сечению весьма неравномерно участки шва с более высокими температурами и вследствие этого менее прочные деформируются больше, чем участки, прилегающие к зоне сплавления и охлаждающиеся более интенсивно. Такое неравномерное распределение деформаций в сварном шве и т.и.х. иногда называют концентрацией деформаций.  [c.480]

Для определения Икр необходимо сварить несколько опытных соединений, испытывая их каждый раз с различной скоростью. Так как согласно условиям испытания режим сварки должен быть постоянным при сравнительном испытании всей серии, то значения асв и Оф или de jdT и де дТ остаются постоянными. В этом случае дополнительный темп деформации, задаваемый по времени dejdt, будет объективно оценивать запас деформационной способности сварного соединения в т.и.х.  [c.484]

Важным параметром сталей является отношение и Ов К в = ат/ств. Чем меньше Ктв, тем выше запас пластичности и качественнее сталь. Причем Ктв отражает способность стали к равномерной деформации без нарушения устойчивости (шейкооб-разование). Полное относительное удлинение 5 и сужение представляется в виде суммы 5 = 5 + 5к и v / = vj/e + v /k, где 5к и  [c.284]

Условие прочности деталей заключается в отсутствии пластической деформации на контактирующих поверхностях деталей, что обеспечивается при р Рдоа- Сравнение допускаемого давления с давлением, возникающим при наибольшем табличном натяге, показывает, что имеется запас прочности втулки, равный (93,2/62,2) 1,5, и вала (117,7/62,2) яг 1,9.  [c.227]


Смотреть страницы где упоминается термин Запас деформациям : [c.101]    [c.140]    [c.309]    [c.320]    [c.206]    [c.13]    [c.484]    [c.289]    [c.356]    [c.167]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.62 , c.97 , c.98 ]



ПОИСК



69 — Формулы 47—56 — Масса постоянного сечения — Деформации относительные 75 — Запас

Деформации, напряжения. Запас прочности, расчетные формулы

Запас

Запас по максимальным местным деформациям

Запас по поминальным деформациям

Запас прочности 3 — 482 — Определение 3 — 434 Формулы 3 — 441 Расчетные формулы деформациям

Запас прочности Определение Формулы по деформациям

Запас прочности на стадии образования, трещин в: зонах и вне зон концентрации напряжений напряжений и деформаций

Запасы прочности - Расчетно-экспериментальное обоснование 172, 173 - Схема анализа местных напряжений и деформаци

Коэффициент запаса по времени поперечной деформации

Коэффициент запаса по времени поперечной деформации 37, 65 Зависимость от деформации

Понятие о напряжениях и деформациях Коэффициенты запаса прочности и допускаемые напряжения



© 2025 Mash-xxl.info Реклама на сайте