Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая стойкость из керамики

Изделия из керамики высшей огнеупорности, получаемые из чистых тугоплавких металлов, карбидов, боридов, силицидов, сульфидов, нитридов (табл. 21.1), обладают высокой химической стойкостью против воздействия расплавленных металлов как в вакууме, так и в среде различных газов, механической прочностью при высоких температурах, стойкостью против ползучести и т. д.  [c.379]

Политетрафторэтилен (фторопласт-4) по химической стойкости превосходит все другие синтетические полимеры, благородные металлы, специальные сплавы, керамику и другие материалы. Изделия из фторопласта-4 изготовляют методом вальцевания или прессования при температуре около 400 °С.  [c.126]


Прокладки из наполненных фторопластов, обладающие высокой химической стойкостью (к действию концентрированных кислот, щелочей, масел, растворителей), достаточной упругостью, герметичностью и малой текучестью, широко применяются для уплотнения соединений труб из металлов, стекла, керамики и пластмасс в химической, пищевой, нефтеперерабатывающей промышленности.  [c.206]

Высокая температура размягчения наряду с хорошей химической стойкостью и высокими механическими свойствами позволяет применять окисную керамику для нанесения антикоррозийных и теплозащитных покрытий в реактивных двигателях. Из чистых окислов производятся теплоизоляционные керамические изделия, которые могут служить до температур порядка 1600—1800° С (рис. 21—24).  [c.490]

Для производства специальных видов керамики, электроизоляционных и некоторых других изделий применяют мелкодисперсную, глубоко прокаленную окись алюминия с малым содержанием щелочей (марки ГН и ГК)- Определенные требования предъявляются к форме и размерам монокристаллов глинозема. Изделия, изготовленные из глинозема марок ГН и ГК, характеризуются высокой температурой плавления, низкой газопроницаемостью, хорошими электроизоляционными свойствами, термической и химической стойкостью против действия расплавленных металлов и шлаков.  [c.114]

Если пайку производят с индукционным нагревом деталей, то близко расположенные к индуктору детали приспособления рекомендуется выполнять из неметаллических материалов (микалекса, эпоксипластов, армированных стеклотканью, керамики), обладающих химической стойкостью к флюсу и высокими изоляционными свойствами. Если применяют металлические детали, то их нельзя выполнять в виде кольца или замкнутой петли, так как в этом случае в них индуцируются ТВЧ. Их делают пустотелыми и применяют для охлаждения проточную воду.  [c.809]

К способам защиты от коррозии часто относят использование неметаллических материалов, обладающих высокой химической стойкостью керамики, фарфора, стекла, пропитанной древесины, графита, синтетических материалов и т. д. Однако изготовление изделия не из металла не может рассматриваться как способ защиты от коррозии — где нет металла, там нет и коррозии его.  [c.9]

Высокой химической стойкостью в растворах гипохлорита натрия обладают некоторые неметаллические конструкционные и защитные материалы (табл. 8.2). Среди них прежде всего следует отметить материалы на неорганической основе природные кислотоупорные материалы, плавленые диабаз и базальт, кислотоупорную керамику, фарфор, стекло, кварц, кислотоупорную силикатную эмаль. Использование керамических плиток, кислотоупорного кирпича и других штучных футеровочных материалов для защиты аппаратуры в производстве гипохлорита натрия ограничивается из-за отсутствия достаточно стойких цементов и замазок.  [c.254]


Значительный интерес для этих целей может представлять ряд неметаллических материалов. Как видно из данных табл. 7.5, керамика, стекло, фарфор, графит, пропитанный феноло-формальдегидной смолой, фаолит А и замазки арзамит-4 и -5 обладают хорошей химической стойкостью в уксусном ангидриде они также оказались стойкими в условиях хлорирования уксусной кислоты в присутствии ангидрида.  [c.152]

Из неметаллических материалов высокой химической стойкостью в водных растворах хлораминов обладают диабазовое литье, керамика, стекло, фарфор, силикатная эмаль, портландцемент и кислотоупорные замазки, а также полимерные материалы полиизобутилен, полиэтилен, винипласт и хлоркаучук из НК.  [c.371]

В отечественной промышленности и за рубежом все большее применение получают высокопрочные материалы типа корундовой керамики, обладающей высокими теплостойкостью, прочностью на сжатие, износостойкостью, устойчивостью к резкому изменению температур, стабильностью электрических параметров, большой химической стойкостью и т. д. Одной из разновидностей этого материала является ультрафарфор марок УФ-46 и УФ-53, из которого изготовляют бандажи волочильных станков в кабельной промышленности и другие детали.  [c.144]

В качестве высокопрочных конструкционных и инструментальных материалов все большее применение получают материалы типа корундовой керамики, обладающие высокими теплостойкостью, прочностью на сжатие, износостойкостью, а также стабильностью электрических параметров, устойчивостью к резкому изменению температур, большой химической стойкостью и т. д. Одной из разновидностей этого материала является ультрафарфор марки УФ-46 типа В8в-2-3 (ГОСТ 5458—64), из которого изготовляют, например, бандажи волочильных машин. Исключительно высокая прочность, твердость и абразивные свойства данных материалов создают большие затруднения при их обработке. Ультрафарфор УФ-46 имеет твердость 9 единиц по Моосу, что только на одну единицу меньше твердости алмаза и на 0,25 меньше твердости кубического нитрида бора. Раньше единственными инструментами, применяемыми при обработке ультрафарфора, были шлифовальные круги из природных алмазов. Авторами проведены работы по внедрению эластичных бес-  [c.16]

В тех случаях, когда одновременно с коррозионными воздействиями наблюдаются и механические, щтучная керамика, видимо, будет еще применяться длительное время, так как полимерные материалы подвержены старению и многие из них по механической прочности еще уступают керамике. Ряд полимерных материалов с высокой химической стойкостью к тому же трудно перерабатывается (склеивается, сваривается и т. д.), в связи с чем они не получили пока достаточного применения. Поэтому повышение качества используемых ныне защитных покрытий является также первостепенной задачей.  [c.71]

Ситаллы являются стеклокристаллическими материалами, получаемыми из твердого стекла путем полной или частичной его кристаллизации, и отличаются высокой прочностью и стойкостью к тер мическим. воздействиям, химической стойкостью. Ситаллы являются конструкционным материалом и по своей природе и технологии получения занимают промежуточное положение между обычным стеклом и керамикой. Помимо химического состава, они отличаются от обычного стекла тем, что в конечном виде имеют микрокристаллическое строение, а от керамики — тем, что они производятся путем полного плавления материалов с последующим формованием изделий из стекломассы и их кристаллизацией.  [c.129]

В химическом производстве часто приходится иметь дело со смесью твердых и жидких веществ. Разделение их производится путем фильтрования или центрифугирования. Для первого случая требуются фильтрующие материалы, которые должны обладать способностью пропускать жидкость и задерживать твердые тела. Фильтрующие материалы должны иметь максимальную химическую стойкость по отношению к действующим на них химическим реагентам. В химических производствах находят применение самые разнообразные фильтрующие материалы хлопчатобумажные, шерстяные и стеклянные ткани, ткани из искусственного волокна, пористое стекло, уголь, асбест, керамика, м-еталлы и т. п. Все фильтрующие материалы в основном можно разделить на три группы 1) тканевые материалы 2) зернистые материалы, 3) пористые плитки.  [c.267]


К керамическим изделиям, предназначенным для работы в химических производствах, предъявляются повышенные требования в отношении химической стойкости. Обычно все изделия такого назначения покрывают глазурью, которая тгр И обжиге расплавляется и покрывает поверхность изделий тонкой блестящей пленкой. Расплавленная глазурь хорошо защищает керамику от проникновения агрессивных растворов и способствует легкой очистке поверхности сосуда при удалении продуктов. Сосуды, аппараты и различные изделия из керамики обладают кислотостойкостью 98%.  [c.445]

Высокой химической стойкостью в растворах азотной кислоты отличаются стекло, эмаль, керамика, фарфор и другие силикатные материалы. Из пластических масс высокой стойкостью в азотной кислоте обладает фторопласт, который применяют для защиты аппаратуры, работающей в азотной кислоте всех концентраций при температурах до 150° С.  [c.520]

Наиболее часто применяемое испытание химической стойкости покрытых изделий заключается в распылении раствора поваренной соли. По этому способу испытуемые образцы, тщательно изолированные в непокрытых местах лаком или менделеевской замазкой, завешиваются на специальных стеклянных крючках (или укладываются на стеклянные подставки) в коррозионный шкаф, который может быть изготовлен из дерева, стекла, керамики и других неэлектропроводных материалов. Образцы не должны касаться друг друга. Брызги раствора направляются не непосредственно на испытуемые образцы, а на стеклянный экран, так что испытание фактически производится в соляном тумане.  [c.157]

Золото обладает уникальным комплексом физических и химических свойств, которого не имеет ни один другой металл. Оно отличается высокой стойкостью к воздействию агрессивных сред, по электро- теплопроводности уступает лишь серебру и меди. Золото очень технологично, из него легко изготовить сверхтонкую фольгу и микронную-проволоку, оно хорошо паяется и сваривается под давлением, золотые покрытия легко наносятся на металлы и керамику. Золото почти полностью отражает инфракрасные лучи, в сплавах обладает каталитической активностью. Такая совокупность полезных свойств золота является причиной его широкого использования в важнейших отраслях современной техники электронике, технике связи, космической и авиационной технике, ядерной энергетике и т. д.  [c.26]

Область применения композитных материалов на полимерной основе постоянно расширяется. Конструкции из полимерных композитов используются в качестве несущих элементов и деталей машин, летательных аппаратов, водных и наземных транспортных средств, протезирующих систем, продолжается внедрение полимерных материалов в строительство и мелиорацию. Важное место занимают они среди конструкционных материалов новых видов техники. Постепенное вытеснение полимерными композитами классических конструкционных материалов (древесины, сталей, металлических сплавов и обычных видов керамики) обусловлено сочетанием в них целого ряда практически важных качеств. Во-первых, это высокие удельные значения деформативных и прочностных характеристик, реализованные в таких широко известных современных композиционных материалах на полимерной основе, как стекло-, угле-, боро- и органопластики. Во-вторых, химическая и коррозионная стойкость, а также широкий спектр электрофизических и тепловых свойств полимерных композитов. В-третьих, их высокая экономическая эффективность как материалов, производимых из дешевых видов сырья. Наконец, высокая технологичность полимерных композитов при применении их в габаритных изделиях различных геометрических форм. По совокупности всех этих показателей композиционные материалы на полимерной основе успешно конкурируют с классическими конструкционными материалами.  [c.8]

Алюмоиттриевый гранат (ИАГ) кристаллизуется в кубической системе, имеет плотность 4,55 г/см , температуру плавления 1930 20 С, удельную теплоемкость 0,59— 0,63 кДж/(кг-К), коэффициент линейного расширения (20—1400°С)8,9-10- , твердость по МоОсу 8,5, диэлектрическую проницаемость 11,7. Керамика из ИАГ с некоторыми добавками может быть получена путем обжига при 1800 С. Она обладает достаточно высокой прочностью (190-МПа при изгибе), удовлетворительной термической стойкостью, является хорошим диэлектриком. Обладает высокой химической стойкостью. Из ИАГ получена прозрачная керамика, однако ее светопропускание невелико.  [c.149]

Композиционные материалы (КМ) совмещают в себе свойства металлов (электро- и теплопроводность, пластичность и др.) и неметаллов (жаропрочность, химическая стойкость, высокая твердость, смазывающие свой-ст ва) [1, с. 48—60 2]. Одни из них представляют собой керамико-металлические композиции (керметы) и изготовляются промышленным способом с использованием методов порошковой металлургии, другие — волокнистые композиционные и дисперсно-отвержденные материалы, которые стали широко известны лишь недавно [1—4].  [c.7]

Атомная структура керамических материалов обеспечивает их химическую стойкость к разрушающем воздействию агрессивной окружающей среды, например, растворителей. Поскольк большинство керамических материалов состоит из оксидов, дальнейшее окисление (при горении или других химических реакциях), как правило, невозможно. Керамика - это материал, который сгорел , прокорродировал и, будучи продуктом этих реакций, уже не подвержен разрушению такого типа. Прочность связей между атомами в керамических материалах определяет их высокие температуры плавления, твердость и жесткость. Природа этих же связей определяет и решающий недостаток керамики - ее хрупкость. Поэтому усилия ученых направлены на устранение таких микроскопических дефектов, как поры, агломераты, химические примеси, которые становятся источниками зарождения трещин. Один из способов достижения этого состоит в тщательной очистке и очень тонком размоле исходного порошка и плотной его упаковке перед спеканием, что приводит к получению керамики с предельно мелкими кристаллическими зернами.  [c.155]


Прозрачная керамика из MgO рассматривается как перспективный материал вследствие высокого прямого светопропускания, малой плотности, повышенной тепло-проводйости и хорошей химической стойкости к парам щелочных металлов. Однако ее способность к гидратации, выражающаяся в потемнении полированной поверхности, летучести при высокой температуре, и сравнительно невысокая механическая прочность ограничивают возможности использования этого материала.  [c.145]

К химически стойкой керамике относится глиношамотная керамика с грубозернистой структурой, а также фарфор. Керамические кислотоупорные изделия должны обладать кис-лотостойкостью, которая характеризует их нерастворимость в кислотах (за исключением плавиковой кислоты) и щелочах. Такие изделия изготавливают из глин, не содержащих примесей, понижающих химическую стойкость (карбонаты, гипс, серный колчедан и т.п.).  [c.344]

Sep arbinox был создан с целью улучшения механических свойств и стойкости против окисления УУКМ путем замены углеродной матрицы на керамическую, состоящую из карбида кремния. При формировании матрицы Si используется процесс химической пропитки из пара. С помощью этого процесса, применяя в качестве полуфабриката пористые волокнистые гаркасы из УВ, получили армированную волокном керамику со следующими матрицами Si , Si + , Ti , Ti + , ВС, B3N4 и Наивысшие механические характеристики получены с матрицей из ВС, а наилучшую защиту от окисления гарантировала матрица из S1 .  [c.239]

Оригинальной конструкцией реакторов являются аппараты, изготовляемые из спеченной керамики твердого фарфора . Применяются они для проведения химических реакций агрессивных жидких сред. Находят применение в химической, фармацевтической, пищевой и других отраслях промышленности. Твердый фарфор является абсолютно водо- и газонепроницаемым. Он обладает высокой коррозионной стойкостью против кислот (за исключением плавиковой кислоты), примерно до 40 °С против щелочей небольшой концентрации и против органических жидкостей и смесей. Вследствие высокой прочности на истирание практически не наблюдается изнашивание под абразивным действием сред во время работы мешалки. Глазурованные поверхности предотвращают выпадение веществ и позволяют вести легкую очистку. Все соприкасающиеся со средой части изготовлены из керамики.  [c.620]

Свойства ниобия и тантала близки. Ниобий более дешевый, зато тантал несколько превосходит его по тугоплавкости и химической стойкости [179]. Эти материалы характеризуются высокой пластичностью, из них легко делать детали выдавливанием и штамповкой. Не теряют пластичности они и при сильном нагреве в условиях высокого вакуума и в атмосфере инертных газов. При повышенных температурах ниобию и танталу свойственна высокая поглощательная способность по отношению к газам, например Н2, О2 и N2, в результате чего эти металлы становятся хрупкими. При тренировке АЭ наблюдается интенсивное газоотделение во всем диапазоне температур от комнатной до 1600°С и эти материалы становятся хрупкими. Такой процесс менее интенсивен при тренировке изделия в атмосфере инертных газов. Взаимодействие ниобия и тантала с керамикой из AI2O3 происходит уже при 1500-1600° С [178]. В зоне контакта металл-керамика протекают интенсивные окислительно-восстановительные реакции. Эти процессы могут идти и через газовую среду с разложением и разрушением решетки [182]. Внешне они проявляются в потемнении керамики по всей толщине, в прилипании металла к керамике, образовании слоя продуктов взаимодействия керамики с металлом и ее разбухании.  [c.39]

Соединения с общей формулой МеО-МегОз называют шпинелями. Например, шпинель MgO-АЬОз, хромовая шпинель Mg0- r203 и др. Химическая стойкость и температура плавления их высоки. Шпинель MgO-АЬОз образует твердые растворы с АЬОз и в меньшей мере с MgO. Добавки шпинели или MgO к глинозему затрудняют рост кристаллов корунда, что используется для регулирования процесса спекания и микроструктуры корундовой керамики. Добавка 5—10% глинозема в массу из крупнозернистого спеченного или электроплавлено-го магнезита способствует образованию шпинельной связки при обжиге изделий. Это повышает термостойкость изделий и температуру их деформации под нагрузкой. Однако такие изделия дороже магнезитовых, что ограничивает их применение.  [c.440]

Арзамиты применяют в основном в качестве вяжущих материалов при футеровке химических аппаратов силикатными штучными материалами и разделке футеровочных швов, но могут быть использованы как мастики для нанесения защитных покрытий при ремонтно-восстановительных работах. Введение в них кислого отвердителя (паратолуолсульфохлорида) требует нанесения на стальную поверхность разделительного лакокрасочного покрытия. Хорошая адгезия к различным поверхностям (из металлов, пластмасс, бетона, керамики, стекла и др.), высокие физико-механические свойства, водостойкость, универсальная химическая стойкость в кислотах и щелочах, за исключением окислителей, теплостойкость (до 170—180°С) — вот свойства, которые предопределяют широкое использование поксидных смол для приготовления лаков, мастик, компаундов.  [c.233]

Для изготовления подшипников, работающих при высокой темиературе, а также в агрессивных средах с абразивными включениями или без смазкн, получили распространение минералокерамические материалы. Исходным сырьем для изготовления минералокерамических материалов служат окись алюминия АЬОз (глинозем по ГОСТ 6912—64), из которой получают корундовую керамику марки ЦМ-332 по ТУ 48-19-282—77 и окиси магния и кремния MgO, SiOz, из которых получают стеатитовую керамику марки ТК-21 по ГОСТ 5458—64 (класс 1Ха) и др. Минералокерамические подшипники обладают высокой твердостью, износостойкостью, механической прочностью, стойкостью против воздействия химических сред и высокой температуры. Физико-механические свойства подшипниковых материалов приведены в табл. 39, а химическая стойкость керами-ческих материалов в работе [34].  [c.149]

Шпинельные огнеупоры состоят из соединений с общей формулой КО-КгОз, называемых шпинелями. Например, благородная шпинель Mg0-Al203, хромовая шпинель Mg0- r203 и др. Химическая стойкость и температура плавления их высоки. Шпинель MgO-АЬОз образует твердые растворы с АЬОз и в меньшей мере с MgO. Добавки шпинели или MgO к глинозему затрудняют рост кристаллов корунда, что используется для регулирования процесса спекания и микроструктуры корундовой керамики. Добавка 5—10 % глинозема в массу из крупнозернистого спеченного или электроплавленого магнезита способствует образованию шпинельной связки при обжиге изделий. Это повышает термостойкость изделий и температуру их деформации под нагрузкой. Однако такие изделия дороже магнезитовых, что ограничивает их применение. Повышение температуры деформации изделий прн образовании шпинели (MgO-АЬОз) объясняется смещением силикатных оболочек с кристаллов периклаза и улучшением их непосредственных контактов хром-шпинель растворяется в периклазе.  [c.405]

Комбинированные (композиционные) материалы совмещают в себе свойства металлов (электро- и теплопроводность, пластичность и др.) и неметаллов (жаростойкость, химическая стойкость, высокая твердость). Одни из них представляют собой керамико-ме-таллические композиции (керметы) и изготовляются промышленным способом с использованием методов порошковой металлургии другие — волокнистые композиционные и дисперсно-отвержденные материалы, которые стали широко известными лишь в последнее десятилетие Новым способом получения таких материалов является гальванический, предусматривающий осаждение комбинированных электрохимических покрытий (КЭП) из электролитов с наложением электрического тока или без него. Преимущества способа по сравнению с методами порошковой металлургии следующие  [c.5]


ВНИПИ Теплопроектом разработано и внедрено новое мастичное покрытие Апкор из атактического полипропилена (побочного продукта при производстве полипропилена, выпускаемого по ту 6-05-1902—81). Покрытие Апкор применяется в качестве непроницаемого химически стойкого подслоя при защите щтучной керамикой горизонтальных поверхностей бетонных и железобетонных строительных конструкций. По химической стойкости Апкор идентичен полиизобутиленовой  [c.62]

Для керамических деталей возможно длительное сохранение высокой размерной точности, что обусловлено исключительной стойкостью керамики к износу. Получение аналогичной точности возможно и для других материалов, но обеспечить такую ее стабильность, как у керамики, практически невозможно. При этом важным качеством технической керамики является ее нечувствительность к воздействию влажности, коррозии, магнитных полей, большинства химических веществ она вдвое легче чугуна, модуль ее упругости втрое выше, а коэффициент линейного расширения примерно такой же (или меньше), как и у твердых сплавов. Фирмой Тото (Япония) выпускаются из керамики мерительные угольники, линейки, эталонные плитки, точность которых достигает долей микрометра. Кроме того, срок  [c.751]

Конструкционные материалы и покрытия из этих смол обладают исключительно высокими физико-химическими показателями и высокой химической стойкостью ко д ногим агрессивным средам. Эпоксисмолы очень легко совмещаются с другими высокомолекулярными соединениями и, в зависимости от характера и природы модифицирующих веществ, обладают кислотостойкостью и щелочестойкостью, теплостойкостью до 110—120" и исключительно высокой адгезией к металлу, бетону, керамике и другим материалам. Эти смолы применяются для изготовления слоистых материалов, литых и прессованных изделий, покрытий, клеев, лаков, цементов и др. Из эпоксидных смол можно формовать изделия в деревянных и гипсовых формах без применения давления.  [c.428]

Эпоксидный клей — синтетическая эпоксидная смола ЭД-б с добавлением специального вещества — отвердителя смолы. Эпоксидный клей используют для склеивания и герметизации соединений деталей из различных металлов и сплавов, ферритов, керамики, стекла, мрамора и других материалов в различных сочетаниях. Такой клей при отвердении обладает высокой химической стойкостью, а также тепло- (до +120 С) и влагостойкостью. Морозостойкость клея до—70° С. Механическая прочность клеевого шва сравнительно высокая. Прочность склеивания на сдвигпри некоторых сочетаниях материалов может доходить до 200 Н/мм. Температура отвердения клея до +160° С.  [c.305]

По химической стойкости политетрафторэтилен превосходит все изв естные синтетические полимерные материалы, специальные сплавы, антикоррозионную керамику и даже благородные металлы (серебро, платину, золото). На фторопласт-4 не действуют разбавленные п концентрированные кислоты, в том числе царская водка , хлорсульфоиовая кислота, горячая азотная кислота, концентрированные щелочи. Политетрафторэтилен нерастворим и не набухает ни в одном из известных растворителей, за исключением фторированного керосина. Фторопласт-4 имеет низкий коэффициент трения. Это свойство полимера используют при изготовлении втулок подшипников скольжения. Кроме того, из фторопласта-4 изготовляют электро- и радиотехнические изделия, пленки, волокна, уплотнительные детали.  [c.146]

Керамика на основе А1зОз (корундовая) обладает высокой прочностью, которая сохраняется при высоких температурах, химически стойка, отличный диэлектрик. Термическая стойкость корунда невысокая. Изделия из него широко применяют во многих областях техники резцы, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной проволоки, детали высокотемпературных печей, подшипники печных конвейеров, детали насосов, свечи зажигания в двигателях внутреннего сгорания. Керамику с плотной структурой используют в качестве вакуумной, пористую — как термоизоляционный материал. В корундовых тиглях проводят плавление различных металлов, оксидов, шлаков. Корундовый материал микролит (ЦМ-332) по свойствам превосходит другие инструментальные материалы, его плотность до 3960 кг/м , Осда до 5000 МПа, твердость 92—93 НКА и красностойкость до 1200 °С. Из микролита изготовляют резцовые пластинки, фильеры, насадки, сопла, матрицы и др.  [c.515]

Эти материалы нестойки в условиях постоянного действия повышенной температуры, органических растворителей, масел, жиров и т. д. Они обнаруживают хорошую стойкость в разбавленных растворах кислот и щелочей. Их применяют в качестве кровельных материалов, а также для однослойной или многослойной водозащитной и химически стойкой изоляции. Изоляционные битумные рулонные материалы применяют в качестве нижнего, а покровные — верхнего слоя кровли или многослойной изоляции. Изоляционные битумные рулонные материалы применяют в качестве нижнего, а покровные — верхнего слоя кровли кли многослойной изоляции. В условиях, когда битумный рулонный материал может быть механически поврежден, его защищают при помощи слоев бетона или керамики. Приклеивание битумных рулонных материалов к основе, склеивание из отдельных листов осуществляется битумными майтиками, причем для химически стойкой изоляции нужно использовать горячую битумную мастику без наполнителя.  [c.272]


Смотреть страницы где упоминается термин Химическая стойкость из керамики : [c.186]    [c.10]    [c.235]    [c.95]    [c.219]    [c.432]    [c.51]    [c.430]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.30 ]



ПОИСК



Керамика

Химическая стойкость

Химическая стойкость кислотоупорной керамики



© 2025 Mash-xxl.info Реклама на сайте