Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бинормаль к траектории

Прямая, перпендикулярная к касательной т и к главной нормали п°, называется бинормалью к траектории в точке М. Единичный вектор бинормали обозначим через 6 положительное направление Ь° выберем так, чтобы три взаимно перпендикулярные вектора т °, п°, Ь° образовали правую систему осей. Эта система осей называется естественными осями, а прямоугольный трехгранник г , п°, Ь° с вершиной в точке М. — естественным трехгранником. Эта новая система координатных осей будет двигаться по траектории вместе с точкой М, следовательно, ориентация осей естественного трехгранника в пространстве будет изменяться в зависимости от вида траектории и закона движения точки по этой траектории.  [c.255]


Приравняем проекции обеих частей этого геометрического равенства соответственно на касательную, главную нормаль и бинормаль к траектории. Если мы обозначим через F , и Fi, проекции F, то будем иметь  [c.141]

Третий орт Пь естественного трехгранника задается с помощью векторного произведения [п п] и определяет бинормаль к траектории.  [c.19]

Барометрическая формула 485 Бесконечно малый поворот 157—160 Бинормаль к траектории 19  [c.567]

Нормаль к траектории точки, перпендикулярную к соприкасающейся плоскости траектории называют бинормалью. Единичный вектор бинормали обозначим Ь и определим его из равенства Ь = г X п. Таким образом, в каждой точке кривой имеем три взаимно перпендикулярные прямые касательную, главную нормаль и бинормаль.  [c.108]

Напомним, что здесь F , Еь и О, iV , Nb суть проекции активной силы и силы реакции на естественные оси, т. е. на касательную т, главную нормаль п и бинормаль Ъ к траектории.  [c.295]

Во многих случаях описание движения материальной точки в декартовых неподвижных осях координат вызывает ряд неудобств. Тогда приходится искать другие системы координат, в которых это движение описывается более просто. Одна из таких систем координат может быть определена сопровождающи.м трехгранником Френе, который образуется касательной к траектории точки, главной нормалью и бинормалью. Такие оси называются естественными осями координат. Как известно из кинематики, проекции абсолютного ускорения точки на естественные оси координат имеют вид  [c.214]

Равенство нулю проекции силы на бинормаль означает, что сила, как и ускорение, лежит в соприкасающейся плоскости к траектории.  [c.157]

При естественном способе задания движения необходимо знать проекции ускорения на оси естественного трехгранника на положительное направление касательной к траектории, по которому направим единичный вектор т, на главную нормаль п и бинормаль Ь (рис. 1.6). Из определения ускорения (1.17) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости траектории и поэтому проекция ускорения на бинормаль равна нулю (вектор  [c.41]

Как следует из последнего уравнения, проекция равнодействующей сил, приложенных к материальной точке, на бинормаль равна нулю, т. е. траектория располагается так, что равнодействующая сила оказ . -вается лежащей в соприкасающейся плоскости, проведенной в данной точке траектории.  [c.12]


Естественные уравнения движения точки по заданной кривой. Когда заданная кривая АВ, по которой движется точка, неподвижна (связь склерономна), удобно пользоваться уравнениями движения в проекциях на оси естественного трехгранника касательную т. направленную в сторону положительного отсчета расстояния s, главную нормаль п, направленную в сторону вогнутости траектории, и бинормаль Ь (рис. 358). Пусть действующая на точку активная сила равна F, а реакция связи — N если связь идеальна, то реакция N нормальна к кривой, т. е. лежит в плоскости пЬ. Тогда уравнение движения  [c.405]

Напомним, что в этих уравнениях s = f t) — закон движения точки по траектории, p = f x, у, z) — радиус кривизны траектории, F , F , Fb — проекции равнодействующей сил, приложенных к точке, на касательную, главную нормаль и бинормаль траектории точки.  [c.106]

Напомним из геометрии касательной к кривой в точке М называется предельное положение секущей ММ, когда точка М приближается по траектории к неподвижной точке М (рис. 1.5) соприкасающейся плоскостью кривой в точке М называют предельное положение плоскости, положение которой определяется касательной и точкой М на кривой, когда точка М приближается к неподвижной точке М главной нормалью кривой в точке М называют прямую, которая пересекает касательную в точке М под прямым углом и лежит в соприкасающейся плоскости бинормалью называют прямую, перпендикулярную к касательной и главной нормали в точке М кривой.  [c.12]

Поскольку траектория конического маятника (окружность радиуса г = 51пфо) заранее известна, то соотношение (86) можно непосредственно найти из уравнений движения маятника в проекциях на главную нормаль и бинормаль к траектории. Эти уравнения, если учесть, что скорость конического маятника к = л9о = (/sin фд) Gq, дают (см. рис. 367)  [c.435]

Естественные уравнения движения. Введем вместо декартовых осей координат естественные оси (см. рис. 7.9) МхпЬ (Л/т — касательная, Мп — главная нормаль и МЬ — бинормаль к траектории в точке Л/ — см. п. 3.3 гл. VII). По формулам (7.25а) и (7.26) проекции вектора ускорения на эти оси равны соответственно  [c.243]

В эгом случае значения векторов v и а определяют по их проекциям не на оси системы отсчета Oxyz (как в 40), а на подвижные осп МхпЬ, имеющие начало в точке М и движущиеся вместе с нею (рис. 122). Эти оси, называемые осями естественного трехгранника (или скоростными осями), направлены следующим образом ось Мх — по касательной к траектории в сторону положительного отсчета расстояния 5 ось Мп — по нормали к траектории, лежащей в соприкасающейся плоскости и направленной в сторону вогнутости траектории ось Mb — перпендикулярно к первым двум так, чтобы она образовала с ними правую систему осей. Нормаль Мп, лежащая в соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская), называется главной нормалью, а перпендикулярная ей нормаль Mb — бинормалью. /  [c.107]

Уравнения в проекциях на оси естественного трехгранника. Для получения этих уравнений спроектируем обе части равенства ma=2Fft на оси ТИтяй, т. е. на касательную УИт к траектории точки, главную нормаль Мп, направленную в сторону вогнутости траектории, и бинормаль Mb (см. в 42 рис. 122 на нем Охуг — оси, по отношению к которым движется точка). Тогда, учитывая, что (см. 43) at=dy/d/, a =uVp, flj=0, получим  [c.187]

Криволинейное движение точки, как известно из 64, может быть онределено или уравнениями движения в декартовых координатах, или траекторией и законом движения s = f t) по этой траектории. В том случае, когда движение точки определено первым способом, ускорение w находится по его проекциям на декартовы координатные оси, как это рассмотрено в предыдущем параграфе. Когда же движение точки определено вторым способом, ускорение W находится по его проекциям на оси, нанравления которых связаны с данной траекторией, а именно на касательную к траектории, главную нормаль и бинормаль. Но, прежде чем переходить к выводу формул для проекций ускорения на эти оси, необходимо рассмотреть некоторые геометрические понятия.  [c.261]


Предположим, что уравнение поверхности, на которой вынуждена оставаться материальная точка, не сод,ержит явно времени. Точка т в своем движении по поверхности опишет некоторую траекторию, полностью расположенную на этой поверхности. Рассматривая уравнения движения в проекциях на естественные оси координат (рис. 165), замечаем, что касательная к траектории будет расположена в касательной плоскости к поверхности, а нормальная реакция будет давать проекции только на нормаль и бинормаль  [c.271]

Построим третий единичный вектор P3 = P1XP2. Этот вектор перпендикулярен Pi и р2 и определяет вторую нормаль к касательной или бинормаль. Три вектора Рь рг. Рз образуют тре) гранник той же ориентации, что и координатные оси Xi. Этот трехгранник, или репер, сопровождает точку Л при ее перемещении вдоль траектории и наз твается подвижным трехгранником или репером Френе. Рассмотрим вектор dpa/ds и разложим ег на составляющие по векторам этого репера р, . Так как вектор dpj/dsXpa, то он лежит в плоскости векторов pi, рз, т. е.  [c.23]

Уравнения (IV.208а) можно представить в иной форме. Пусть О — центр кривизны траектории, тогда отрезок МО равен р. Через точку О в общей нормальной плоскости кривых аа и ЬЬ проведем перпендикуляр к вектору V. Пусть он пересечет главную нормаль и бинормаль геодезической кривой в точках L и Л. Отрезок МР называется радиусом нормальной кривизны траектории точки М, отрезок МК — радиус геодезической кривизны траектории  [c.426]

Образуем щетку, содержащую прямую тела и бинормаль подвижного аксоида образуем щетку, содержащую бинормаль линейчатой поверхности (траектории), описываемой прямой тела, и бинормаль неподвижного аксоида. Три прямые — общий пересекающий перпендикуляр указанных двух щеток, общий пересекающий перпендикуляр прямой тела и бинормали ее траектории, общая образующая аксоидов — пересекаются в одной точке под прямыми углами (построение к обобщенной теореме Эйлера Савари для пространственного движения, данное в 3 гл.VII этой книги)  [c.195]


Смотреть страницы где упоминается термин Бинормаль к траектории : [c.210]    [c.306]    [c.429]    [c.423]    [c.38]    [c.264]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.19 ]



ПОИСК



Бинормаль

Траектория

Траектория е-траектория



© 2025 Mash-xxl.info Реклама на сайте