Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации в пределах динамические — Измерение

Метод основан па свойстве большинства прозрачных материалов становиться двоякопреломляющи.ми под действием нагрузки получаемая оптическая анизотропия, связанная с возникающими деформациями (напряжениями), замеряется с помощью поляризованного света. Исследования ведутся на прозрачных моделях той же формы, что и изучаемая деталь нагрузка модели, подобная нагрузке детали, прилагается к модели статически или динамически. Метод измерения разработан применительно к определению напряжений в деталях плоской и объемной формы, выполненных из однородного материала, при деформации в пределах пропорциональности.  [c.519]


Для статического измерения сил служат известные из курса физики приборы, называемые динамометрами. Главную часть этих приборов составляет градуированная пружина. Принцип действия динамометра основан на том, что до известных пределов деформация пружины (растяжение или сжатие) пропорциональна силе, ее вызывающей, и исчезает по прекращении действия этой силы. При этом о модуле силы, приложенной к пружине, судят по величине растяжения или сжатия пружины. Такой способ измерения модуля силы основан, таким образом, на равновесии между приложенной силой, модуль которой измеряется, и силой упругости, развиваемой пружиной динамометра. Поэтому этот способ измерения модуля силы можно назвать статическим. Другой, динамический, способ измерения модуля силы будет указан в динамике .  [c.21]

При всех рабочих режимах в консольных зонах лопасти напряжения по данным натурных измерений не превышают 500 кг/см , тогда как в предположении равномерно распределенной нагрузки, равной гидростатическому напору Я = = 2,6 кг/см , напряжения в тонкой части лопасти со стороны выходной кромки достигают примерно 1000 кг/см . Поэтому, учитывая, что при натурных измерениях на Нарвской и Волжской ГЭС не зафиксировано значительных динамических составляющих деформаций, представляется неоправданным принятое на турбинах Волжской ГЭС увеличение толщины лопасти ПЛ-587 в консольной менее напряженной зоне (по сравнению с лопастью ПЛ-495). Оценка прочности с учетом предела выносливости натурной лопасти показывает, что запас прочности лопасти в наиболее напряженном месте достаточен [24].  [c.460]

Возможность образования волн разрушения в напряженном хрупком материале обсуждалась теоретически в работах [95 — 97]. Следует отметить, что из теоретических соображений не удалось верно оценить скорость ее распространения. Экспериментально волны разрушения в стекле наблюдались в условиях точечного взрыва [98], при этом ее скорость найдена равной 1,3 км/с, что согласуется с результатами описанных выше измерений в условиях одномерной деформации. Однако, в случае сферической симметрии создаются растягивающие напряжения в окружном направлении, что существенно отличает условия деформирования от плоского случая. В подтверждение возможности дробления стекла, сжатого плоской упругой волной, можно привести также отмеченные выше искажения плоских внутренних поверхностей пластин в стопе по достижении динамического предела упругости.  [c.116]


На рис. 1 представлены динамическая и статическая характеристики для образца, изготовленного из мягкой стали. Кривая 1 — является статической кривой, кривая 2 — динамической. Последняя вычерчена при помощи метода, предложенного X. А. Рахматулиным [108], на основе измерений остаточных деформаций начального сечения ударяемого образца в функции скорости удара. При динамическом нагружении образца происходит увеличение предела текучести материала. Характер кривой определяется видом материала. В большом количестве экспериментальных работ установлено, что металлы, имеющие хорошо выраженный предел текучести, особенно чувствительны к скорости деформации.  [c.10]

Под влиянием серьезных вопросов, поднятых Кэмпбеллом ( ampbell [1951, 1], [1952, 1]) ) относительно использования электро-тензометрических датчиков сопротивления в исследовании динамической пластичности, я затратил значительные усилия, чтобы сделать длинные образцы, упругая зона ( остров ) которых находилась бы в середине, так что максимальная деформация в этой части образца, где располагались датчики, не превосходила бы значения, соответствующего пределу упругости. Последующие экспериментаторы не смогли полностью исследовать этот аспект эксперимента в своих работах, и этим объясняется то, что прошло 10—15 лет, прежде чем появились надежные измерения деталей нарастающей волны нагружения.  [c.240]

Ближе к существу физической проблемы, рассмотренной Дэвисом и Гопкинсоном, были результаты опытов, проводившихся в условиях симметричного свободного удара, показанные на )ис. 4.174. Часть докторской диссертации Хартмана (Hartman 1967, 1], [1969, 1]) посвящена измерению динамических деформаций с помощью дифракционных решеток в поликристаллах отожженной а-латуни. Измеренный квазистатический предел упругости этой отожженной латуни составил У=14 500 фунт/дюйм (10,2 кгс/мм ). Значение динамического предела упругости, определенное по фронту начальной волны с помощью измерений профилей волны деформаций двумя дифракционными решетками, изображенных на рис. 4.174, было равно У=27 700 фунт/дюйм (19,5 кгс/мм ) увеличение произошло почти в два раза. Путем сопоставления результатов эксперимента (сплошные линии) с расчетными, основанными на снижении скоростей волн и наибольших деформаций, выраженных через предел упругости У, я установил, что поведение образцов не описывается правильно ни квазистатическим значением 10,2 кгс/мм , ни более высоким динамическим значением 19,5 кгс/мм . Скорости распространения волн и наибольшие деформации, по экспериментальным наблюдениям, как и в любых твердых деформируемых телах, для которых рассматривались профили волн конечных деформаций, соответствовали пределу упругости У=0. На рис. 4.175 продолжительность перемещения (темные кружки) от одной позиции до другой и максимальные де юрмации для обеих позиций согласуются с полученными на основании расчета, в котором использована параболическая аппроксимация при г=3. Таким образом, приходим к типу поведения материала, который характеризуется графиком, показанным на рис. 4.176. Эксперименты с образцами поликристалли-ческого магния, для которого легко добиться существенного изменения предела упругости У, дали результаты (Bell [1968, 1]), идентичные с полученными для образцов из алюминия и а-латуни.  [c.275]

Рис. 4.175. Графики зависнмостн деформация — время, построенные по результатам опытов Хартмана с образцами из поликристаллической а-латуни, измерение конечных деформаций в которых выполнено при помощи дифракционных решеток. Графики показывают, что фронт пластической волны не изменяется при повышении динамического предела упругости Рис. 4.175. Графики зависнмостн деформация — время, построенные по результатам опытов Хартмана с образцами из поликристаллической а-латуни, измерение <a href="/info/142910">конечных деформаций</a> в которых выполнено при помощи дифракционных решеток. Графики показывают, что фронт <a href="/info/174719">пластической волны</a> не изменяется при повышении динамического предела упругости
Б. Гопкинсон [55] повторил опыты своего отца, применяя аппаратуру, которая позволяла ему измерять максимальную деформацию в верхнем конце проволоки он использовал также малые грузы, так что скорость экспоненциального убывания напряжения в хвосте волны была очень велика. Тем не менее, как показал Тейлор [139], наибольшее растягивающее напряжение в опытах Б. Гопкинсона возникало не при первом отражении, когда напряжение равнялось 2р1/о о, а при третьем отражении, т. е. при втором отражении в верхнем конце проволоки, когда напряжение достигало значения 2,15рКоСо. Б. Гопкинсон в этих опытах показал, что предел прочности при динамическом растяжении металлической проволоки гораздо больше, чем при статических измерениях, причем поправка для напряжения, сделанная Тейлором, только подкрепляет это заключение.  [c.169]


Для исследования динамических диаграмм напряжение — деформация материалов при нормальных температурах используют мерные стержни Гопкинсона. Сущность метода испытаний сводится к тому, что образец располагают между торцами двух мерных стержней и нагружают импульсом давления, возбуждаемым в одном из стержней. Напряжение, деформацию, скорость деформации образца определяют по известным соотношениям теории упругих волн из условий равенства усилий и перемещений соприкасающихся торцовых сечений образца и стержней. При этом предполагают, что амплитуда импульса давления и предел прочности исследуемого материала образца ниже предела пропорциональности материала стержней. Применение указанного метода при повышенных температурах связано с трудностями измерений упругих характеристик материала стержней и деформаций. На рис. 8 приведена функциональная схема устройства для исследования влияния температуры на динамические прочностные характеристики металлов при одноосном сжатии. Исследуёмый образец 6 расположен между мерными стержнями 5 и S. Импульс давления возбуждают в стержне 5 с помощью взрывного нагружающего устройства, состоящего из тонкого слоя взрывчатого вещества 1, ударника 2 и демпфера 3. При взрыве в стержне возникает импульс сжатия трапецеидальной формы, характеристики которого зависят от плотности материала и диаметра демпфера, а также соотношения толщины демпфера и слоя взрыв-  [c.111]

Измерение динамических напряжений проводится с помощью термостойких тензорезисторов на металлической подложке с базой решетки 10 J лl и сопротивлением порядка 150 ом. Максимальная рабочая температура тензорезисторов составляет 430° С, коэффициент чувствительности при температуре 250° С равен 1,8. В каждой исследуемой точке устанавливаются два тензорезистора в известных направлениях главных деформаций. Для герметизации датчики закрывают колпаками, которые обвариваются по контуру. Соединительные провода от датчиков выводятся в заш,итных трубках диаметром 6 мм толщиной стенки 1 мм, которые по всей трэссе внутри аппарата крепятся к поверхности элемента скобами, приваренными с шагом 150—200 мм. Для измерения динамических напряжений применяется мостовая схема с выносной компенсацией по активной и емкостной составляющим. Такая схема позволяет значительно сократить время балансировки мостов при переключении датчиков. Перед каждым измерением проводится статическая тарировка каналов путем последовательного подключения в плечо моста постоянного сопротивления величиной 0,01 ом с регистрацией отклонения светового луча на экране осциллографа. В качестве вторичных приборов используются тензометрические усилители и светолучевые осциллографы. Суммарная погрешность измерений динамических напряжений составляет 12% от предела измерений. Одновременно можно записать сигналы по двадцати каналам, что обеспечивает регистрацию необходимого для анализа количества тензорезисторов и датчиков пульсаций давления,  [c.156]

В производственных условиях перед контролером часто возникает вопрос о возможности применения того или иного ш,упового прибора для измерения шероховатости поверхности изделий из мягких материалов. Профилометрам и профилографам присущи определенные погрешности, объясняемые природой контактного метода измерений. Основными пара-.метрами прибора, которые в первую очередь определяют величину искажений при ощупывании поверхности, являются, как указывалось выше, радиус закругления щупа г и усилие Р. Если радиус закругления иглы. можно рассматривать на определенном отрезке времени как величину постоянную для данного прибора, то измерительное усилие, в зависимости от динамических характеристик ощупывающей системы, скорости ощупывания и характера профиля контролируемой поверхности, может сильно изменяться- Это обстоятельство учитывается при конструировании приборов, В современных профилометрах и профилографах, благодаря рациональной конструкции датчиков, а также уменьшению скорости ощупывания добиваются значительного снижения доли динамической составляющей Р,) в общей величине усилия Р. Если радиус закругления иглы у большинства профилометров принят равным 10—15 мк. то измерительное усилие колеблется в весьма широких пределах и достигает в некоторых конструкциях 1—2 гс. Естественно, что при таких уси- лиях на поверхности контролируемого изде.лия, в зависимости от меха нических свойств, и в первую очередь, от твердости материала, будут оставаться более или менее глубокие царапины. Царапание, как следует из анализа, приводимого в главе VI, может по-разному сказаться на показаниях щуповых приборов. Когда размеры впадин велики по сравнению с размерами щупа (при пологом профиле с большим шагом неровностей), а перепад усилия ощупывания на дне впадины и на выступе характеризуется небольшой величиной, погрешности измерения незначительны. При узких микронеровностях, вследствие различных условий деформаций материала на гребешке и во впадине, происходит сглаживание профиля и соответствующее уменьшение измеренной высоты. Это уменьшение тем значительней, чем мягче материал контролируемого изделия и чище его поверхность. На фиг. 115 схематически показаны общие соотношения мелкду данными, получающимися при ощупывании, поверхности иглами с радиусами закруглений г= 10 мк при измерительных усилиях — 2 с С и показаниями оптических бесконтактных приборов. По оси абсцисс графика отложены классы чистоты, установленные с помощью оптических приборов по оси ординат — классы, получающиеся при ощупывании иглами, имеющими указанные выше г и Р. Кривая Т относится к теоретической поверхности абсолютно твердого тела с весь ма пологими неровностями кривая Л4 —- к поверхности изделий с твердостью Ял <20 кгс1мм и углом раскрытия впадин 100°. Между этими двумя кривыми располагаются кривые, относящиеся к поверхностям изделий из стали (С), бронзы (б) и т. п. При контроле профилометрами, имеющими значительные усилия ощупывания чистых поверх-  [c.154]


До работ Дюло 1812 г. и Дюпена 1811 г. все экспериментальные определения -модуля Джордано Риккати, Хладни, Юнгом и Био, а также модуля [х Кулоном были динамическими, основанными на определении частоты колебаний или, в единственном случае, Био, на измерении скорости распространения волн. Эксперименты Дюло и Дюпена были первыми квазистатическими в области подлинно малых деформаций. Исчерпывающее исследование Дюло призматических стержней с различной формой поперечного сечения, подвергнутых нагружению, изменяющемуся в широких пределах, представляет собой веху не только в историческом развитии экспериментальной механики твердого тела, но также в теоретическом обосновании линейной теории упругости, которая стала быстро развиваться в последующие годы.  [c.278]

Рис. 4.161. Опыты Эфрона и Малверна (1964). Зависимость волновой скорости от скоростей частиц, полученная на основе индукционной техники (сплошная линия, динамический предел упругости 3200 фунт/дюйм ), и сравнение с расчетными значениями по данным дифракционных измерений деформаций, выполненных Беллом (кружки н штриховая линия динамический предел упругости 1100 фунт/дюйм ). По оси абсцисс отложена скорость частиц образца в дюйм/с, по оси ординат — волновая скорость [ср, дюйм/с].10 . Рис. 4.161. Опыты Эфрона и Малверна (1964). Зависимость <a href="/info/19493">волновой скорости</a> от <a href="/info/203588">скоростей частиц</a>, полученная на основе индукционной техники (<a href="/info/232485">сплошная линия</a>, <a href="/info/561205">динамический предел упругости</a> 3200 фунт/дюйм ), и сравнение с расчетными значениями по данным дифракционных <a href="/info/85967">измерений деформаций</a>, выполненных Беллом (кружки н <a href="/info/1024">штриховая линия</a> <a href="/info/561205">динамический предел упругости</a> 1100 фунт/дюйм ). По оси абсцисс отложена <a href="/info/203588">скорость частиц</a> образца в дюйм/с, по оси ординат — <a href="/info/19493">волновая скорость</a> [ср, дюйм/с].10 .
Обзор работ того периода, сделанный работниками арсенала Уотертаун (1953 г.), показывает, что на решение этой проблемы были направлены объединенные усилия нескольких артиллерийских лабораторий, которые применяли самые современные методы экспериментальной и аналитической механики. В число последних входили, например, метод трехмерных хрупких покрытий, метод фотоупругих покрытий, измерение давлений в канале ствола с помощью пьезоэлектрических датчиков, а также измерение динамических деформаций с помощью специальных тензометров. Эти работы указывали на то, что разрушения являются результатом приложения повторных нагрузок, вызывающих напряжения, значительно превышающие предел выносливости материала. Они привели к разработке и принятию на вооружение видоизмененных конструкций орудий, в которых концентрация напряжений была устранена или уменьшена.  [c.280]

Для успешной разработки техники фотопластического ис-. следования динамических напряжений требуется соединение нелинейной фотомеханики с теорией распространения упругопластических волн. Фотопластический материал модели должен обладать пределом текучести , уровни напряжений в модели должны быть сопоставимы с напряжениями в прототипе, а расп )остраняющиеся волны напряжений должны разделяться на упругие и пластические составляющие. Поскольку поведение материала зависит от скорости, прежде чем пользоваться им, необходимо определить, как физические и оптические свойства меняются при изменении скорости деформирования, а также найти подходящий метод измерения постоянной деформации. Следовательно, значительные усилия должны быть направлены на процесс калибровки материала.  [c.215]

Трудности, связанные с такими измерениями, и некоторые методы, которые использовались для их преодоления, рассмотрены Тейлором [139]. В гл. VIII будут рассмотрены работы по динамическим испытаниям твердых тел, связанные с измерением предела текучести и предела прочности в случае растяжения при высоких скоростях нагружения. Здесь мы опишем методы построения кривых напряжения— деформации при высоких скоростях нагружения, которые были развиты Тейлором 1139], Э. Вольтерра [149] и автором [73].  [c.140]


Смотреть страницы где упоминается термин Деформации в пределах динамические — Измерение : [c.273]    [c.36]    [c.206]   
Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.381 ]



ПОИСК



Деформации в пределах упругости динамические — Измерение 3 381, 489 — Измерение — Аппаратура

Деформации динамические — Измерение

Деформации — Измерение

Деформация динамическая

Измерение динамическое

Пределы измерения



© 2025 Mash-xxl.info Реклама на сайте