Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение в следе вихревая пелена

ПАС в ступенях с относительно длинными лопатками. Условия работы лопаток в неравномерном потоке могут существенно изменяться вдоль радиуса. Это объясняется различием профилей лопаток, их шага и углов, изменением степени реактивности и осевых зазоров, меридиональным раскрытием проточной части и наклоном РЛ. Эти факторы влияют на формирование импульсов давления в межлопаточных каналах и, следовательно, на величину ПАС. Существенное влияние на процесс имеет постепенный вход РЛ под углом в вихревую пелену, образованную кромочными следами, а также сильная деформация вихревой пелены у концов лопаток из-за концевых течений.  [c.247]


Условия (21.3) и (21.4) удовлетворены автоматически в силу симметрии течения относительно плоскости у = 0] вихревой пелены при этом вообще нет. Условие в бесконечности (21.5) удовлетворено, как это следует из исходного выражения (21.6) для потенциала возмущений ф.  [c.375]

В работе [L.9] разработан метод расчета деформаций вихревого следа. Модель следа учитывала до 10 продольных вихрей. Поперечные вихри не учитывались. Исследовалась лишь форма концевых вихрей. Шаг по азимуту составлял от Ai) = 15° до All = 30°. Расчет производился в течение 5 оборотов винта. Оказалось, что форма вихрей слабо зависит от радиуса ядра. Для уменьшения времени счета элементы вихрей разделялись на ближние и дальние. К первым относились все элементы, относительно которых в первой итерации было установлено, что они существенно влияют на индуктивную скорость в заданной точке пелены. Для ускорения счета в последующих приближениях при вычислении индуктивных скоростей учитывались только ближние вихри. В результате время, требуемое для определения формы свободных вихрей, уменьшилось на порядок.  [c.679]

Если, например, твердое тело приводится в движение в покоящейся реагирующей жидкости, то течение жидкости вначале будет безвихревым, затем в жидкости в окрестности твердого тела возникнет вихревая пелена, которая будет диффундировать во внешний поток, в результате чего вб и-зи тела образуется пограничный слой газа. Для описания течения в пограничном слое при обтекании тела вязкой несжимаемой жидкостью начальные условия записываютсг в виде (5.5.1), но вместо индекса н следует использовать 1[н-декс е, который означает, что в качестве начальных условий принимаются параметры для безвихревого течения невязкой жидкости.  [c.209]

Дисковая вихревая теория несуш,его винта в вертикальном полете элементарно проста, особенно в случае равномерной нагрузки. Лопастная вихревая теория рассматривает винт с конечным числом лопастей, и схематизирует след вихревыми нитями и пеленами, которые расположены на геликоидах, отходящих от каждой лопасти. Задача о расчете индуктивной скорости в этом случае математически гораздо сложнее, чем в случае завихренности, распределенной по следу, но для осевого течения еще можно получить некоторые аналитические соотношения. Лопастная вихревая теория аналогична анализу работы крыла, выполняемому в плоскости Треффца. В таком анализе рассматривается дальний след, где влияние крыла на течение пренебрежимо слабо. Решение задачи о распределении завихренности в следе определяет также нагрузку крыла. Путем решения более простой задачи в дальнем следе (где параметры не зависят от осевой координаты) можно получить точное распределение нагрузки крыла с учетом влияния его концов. Практическая пригодность решения зависит от принятой схемы следа. В классических работах использованы далекие от реальности схемы вихревой пелены, не сворачивающейся в концевые вихревые жгуты и не возмущенной вследствие самоиндукции. Анализ дальнего следа при исследовании обтекания несущего винта не позволяет сделать какие-либо выводы о том, как должна быть скомпонована лопасть для получения жё--лаемой нагрузки. Для этого нужно знать индуктивную скорость на диске винта.  [c.91]


След за круговым цилиндром во многих аспектах подобен следу за плоской пластиной. Когда число Рейнольдса превышает некоторое критическое значение, за цилиндром формируется пара вихрей. Эта пара растягивается в направлении потока, становится несимметричной и в конце концов разрушается и сносится вниз по патоку, распространяя завихренность попеременно на обе стороны следа. При умеренно больших числах Рейнольдса не всегда существует начальная пара вихрей, и так как поверхность разрыва, сходящая с поверхности цилиндра, неустойчива, она свертывается в отдельные вихри с образованием вихревой пелены. Таким образом, вихревое движение определенной частоты существует при любом числе Рейнольдса, и вниз по потоку распространяется двойной ряд вихрей. При ббльших числах Рейнольдса, скажем более Ке = 2500, вихри рассеиваются по мере образования, поэтому двойной ряд вихрей не может существовать. На задней стороне цилиндра вихри периодически отрываются, пока число Рейнольдса не достигнет значения Ке = 4 -10 — 5 -10 . При этих значениях числа Рейнольдса течение в следе становится турбулентным. Как и в случае плоской пластины, хвостовая пластина за цилиндром предотвращает отрыв вихрей и оказывает сильное влияние на сопротивление цилиндра, уменьшая коэффициент сопротивления от 1,1 до 0,9 [11, 12]. Пластина эффективна на расстоянии первых четырех-пяти диаметров вниз по потоку. Если два вязких слоя на каждой стороне следа не взаимодействуют друг с другом в области, гдо они имеют тенденцию к свертыванию в вихрь, то не возникает стабилизирующего механизма, закрепляющего определенвое периодическое образование вихрей. Поэтому вязкие спои разрушаются независимо друг от друга [121. Давление за пластиной или цилиндром мевьше, чем давление  [c.85]

Остановимся далее на выводе уравнений движения вихревых частиц для моделирования плоских течений в односвязных областях с возможностью отрыва на острых кромках. Следуя работе П.А. Куйбина [1993], рассмотрим плоское течение несжимаемой невязкой жидкости в области D, граница которой дО имеет точку излома. Локально граница вблизи точки излома представляется в виде клина с углом раствора р. Введем в D декартовы координаты 2, 22, выбрав начало координат на кромке клина, и соответствующую комплексную переменную z = Z] + iz2 (i - мнимая единица). Пусть известно конформгюе отображение (2) области D на полуплоскость = + i 2 (Q > 0). Граница 3D переходит при этом в линию < 2 = 0. Без потери общности предположим, что (0) = 0. Отрыв течения будем моделировать сходом бесконечно тонкого вихревого слоя (вихревой пелены) с острой кромки. Представим поле завихренности со в виде суммы внешней завихренности og (external), присутствующей в общем случае в потоке в начальный момент времени, и завихренности, генерируемой в результате отрыва со,,, (separated). Зная поле завихренности и функцию Грина оператора Лапласа для полуплоскости [Владимиров, 1976], известным образом находим функцию тока  [c.328]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]



Смотреть страницы где упоминается термин Течение в следе вихревая пелена : [c.83]    [c.353]    [c.372]    [c.681]    [c.121]    [c.127]    [c.190]   
Отрывные течения Том 3 (1970) -- [ c.2 , c.85 ]



ПОИСК



Вихревая пелена

Вихревой след

Вихревые усы

Пелиты

Следы

Течение в следе

Течение вихревое



© 2025 Mash-xxl.info Реклама на сайте