Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Голографические методы неразрушающего контроля

Элементы голографических приборов контроля. Практическое применение голографических методов неразрушающего контроля требует выполнения ряда условий, основными из которых являются следующие.  [c.54]

Все большее значение приобретает голографический метод неразрушающего контроля. Относительная простота, возможность исследования поверхностей, имеющих неровный профиль, предметов неправильной формы обусловили широкое применение голографии для контроля качества изделий и выявления скрытых дефектов.  [c.178]


Принципиальными достоинствами голографических методов неразрушающего контроля по сравнению с другими методами  [c.209]

Переходя к рассмотрению областей применения голографических методов неразрушающего контроля, заметим, что вследствие их сравнительной сложности и дороговизны основной областью применения этих методов в настоящее время является контроль наиболее ответственных узлов дорогостоящих устройств и аппаратов. Неслучайно наиболее интенсивные исследования в этой области за рубежом ведутся применительно к задачам авиационной и космической техники. Так, исследована возможность контроля лопаток турбин авиационных двигателей [227 ], шин самолетных колес и тормозных дисков [193] и т. д. В работе [231] показана возможность исследования методом голографии деформаций корпусов ракетных двигателей, возникающих при нагреве топлива в камере сгорания.  [c.214]

В радиоэлектронной промышленности с помощью этих методов определяют дефектные элементы полупроводниковых и интегральных схем по увеличению нагрева таких элементов при работе схемы и связанному с ним росту числа интерференционных полос. Методы голографической интерферометрии находят применение в оптической промышленности на стадиях определения качества оптических материалов, их обработки до заданной формы и закрепления в оправах [47, 181 ]. Этими методами с успехом контролировались также искажения активных элементов лазеров на твердом теле [31 ] и растворах органических красителей, возникающие в процессе их накачки [56]. Наконец, в строительной механике голографические методы используются для контроля деформаций балок и исследования моделей строительных сооружений [84]. Перечисленные примеры не исчерпывают многообразия применений голографических методов неразрушающего контроля и их возможностей. Более подробную информацию по этим вопросам можно найти в ряде обстоятельных обзоров [2, 16, 85, 97, 255].  [c.214]

Перед испытаниями на двигателе лопатки вентилятора газотурбинного двигателя подвергали серии специальных испытаний. На вибростоле определяли резонансные частоты изгибных и крутильных колебаний (включая определение основных гармоник и усталостных свойств). Применяли также другие методы неразрушающего контроля, такие, как ультразвуковой анализ расслоения, непровара, трещин рентгеновский анализ укладки волокон, их перекрещивания, наличия пор и повреждений лазерная голография определ ения однородности вибрационной характеристики. Голографическое исследование показывает локальные отклонения по сравнению с нормальным вибрационным поведением, вызванные дефектами изготовления материала или конструкции.  [c.494]


Применение оптических квантовых генераторов (лазеров) позволяет существенно расширить границы традиционных оптических методов контроля и создать принципиально новые методы оптического неразрушающего контроля, например, голографические, акустооптические и др. Лазерная дефектоскопия базируется на использовании основных свойств лазерного излучения — монохроматичности, когерентности и направленности.  [c.51]

Наряду с выбором параметров голографической установки для записи и наблюдения интерферограмм большое значение имеет также способ нагрузки объекта, применяемый для выявления дефектов. При голографическом неразрушающем контроле чаще всего применяют внешние статические [16] или динамические [164] нагрузки, нагрев объекта, а также вибрационные методы [193, 223]. В случае исследования шин с успехом используется изменение давления внутри объекта [193, 201]. Пример выявления дефектов при ударной нагрузке образца приведен на рис. 128.  [c.213]

Все более широкое применение методы голографического неразрушающего контроля находят в машиностроении для определения качества лопаток паровых турбин [111, 231], баллонов высокого давления [200], мембран датчиков высокого давления [97], для выявления дефектов сварки [3, 54, 149] и др. Характерная картина распределения амплитуд колебаний турбинной лопатки на резонансной частоте приведена на рис. 129, где отчетливо видно увеличение контраста интерференционных полос в случае стробоголографической записи интерферограммы.  [c.214]

Перспективы развития методов голографического неразрушающего контроля связаны главным образом с преодолением существу-  [c.215]

Для повышения эффективности контроля и уменьшения его трудоемкости разработаны и освоены приборы, дефектоскопы и другие средства неразрушающего контроля с помощью радиационных, акустических, электромагнитных, тепловых, голографических и других методов созданы механизированные, автоматизированные и роботизированные установки, в том числе для встроенного контроля.  [c.86]

Книга посвящена основам теории цифрового представления волновых полей, их преобразованиям, алгоритмам вычисления этих преобра,зований, синтезу и записи голограмм, пространственным фильтрам для оптических систем обработки данных, визуализации информации, методам цифрового восстановления голограмм и интерферограмм, цифровому моделированию голографических процессов. Показано применение методов в оптике, акустике, измерительной технике, при неразрушающем контроле.  [c.2]

Изобретение оптической голографии [25, 26, 133—136, 174—177] сыграло революционизирующую роль в развитии науки и техники. На стыке радиотехники, техники связи и оптики родился поток новых идей, методов, технических средств записи, хранения, обработки, воспроизведения информации. Современная голография — это радио и звуковидение [2, 4, 9, 60, 140], голографическая интерферометрия и неразрушающий контроль [18, 56], оптическая обработка сигналов [1, 24, 55, 59], оптическое моделирование, контроль и коррекция излучающих систем [8, 9], изобразительная голография [54, 91].  [c.3]

Использование методов голографии и голографической интерферометрии в технологии позволяет решать задачи неразрушающего контроля качества изделий, а также осуществлять дефектоскопию изделий в ультразвуковом и рентгеновском диапазонах. Восстановление ультразвуковых голограмм в световом диапазоне позволяет сравнительно просто визуализировать внутреннее строение и дефекты контролируемых изделий, устраняя основную трудность ультразвуковой дефектоскопии — расшифровку полученных данных.  [c.259]

При проведении ГНК. Некоторые из этих методов мы опишем в последующих пунктах. Методы голографической корреляции особенно удобны для исследования поверхности, и их применения обычно преследуют ту же цель. Корреляционные методы применялись также для улучшения различных видов оптической обработки данных, используемой при неразрушающем контроле [3, 7, 13].  [c.345]

Получение, изучение и интерпретация такого рода картин и составляют содержание метода голографической интерферометрии. В настоящее время голографическую интерферометрию с успехом применяют для неразрушаюЩего контроля деталей, узлов, клееных, паяных и других видов соединений [88, 94].  [c.220]


Различные способы голографической интерферометрии позволяют решать многие сложные задачи механики деформирования и технологического неразрушающего контроля за деталями. Более полные сведения об экспериментальных способах можно найти, например, в книге Сухарев И. П. Экспериментальные методы исследования деформаций и прочности. М., Машиностроение, 1987. (Библиотека расчетчика.)  [c.545]

Перспективные методы контроля качества сварного соединения. В последние годы в ЦНИИТМАШе разработаны методы распознавания формы дефекта на основе использования УЗК и применения ЭВМ. Это может иметь большое практическое значение для техники получения сварного соединения, поскольку в трудах акад. Г. А. Николаева показано, что работоспособность сварных конструкций определяется прежде всего формой дефектов. Одним из новых и перспективных методов для исследования процессов ДС и неразрушающего контроля готовых сварных соединений является метод акустической эмиссии (АЭ), основанный на использовании явления эмиссии упругих волн. Процессы ДС сопровождаются рядом динамических явлений (пластическое деформирование, разрыв внутренних связей и др.), при которых происходит излучение упругих волн, вследствие чего они контролируются акустическими методами. При контроле процесса ДС методом АЭ проявляется его активность дефект как источник сигнала обнаруживается в процессе сварки [3]. Метод АЭ уже получил практическое применение для контроля процесса образования соединения при ДС и оценки его качества. Так, например, при ДС меди с бериллием установлено, что по кинетическим зависимостям интенсивности сигналов АЭ от длительности нагрева и охлаждения можно достаточно эффективно контролировать развитие релаксационных процессов в зоне соединения, образование и разрушение интерметаллидных прослоек [14]. Перспективным методом контроля качества ДС является также голографическая дефектоскопия. Проведенные эксперименты дали положительные результаты при контроле тонкостенных конструкций [13].  [c.253]

Неразрушающий контроль с помощью голографической интерферометрии является в основном лабораторным методом, поскольку условия стабильности, необходимые для регистрации голограммы, требуют наличия развязанного от вибраций оборудования. Однако с развитием экспериментальной техники эти ограничения постепенно устраняются, и в США испытательное оборудование уже выпускается на рынок для использования в заводских условиях.  [c.190]

Контроль неразрушающий. Голографический иммерсионный метод контроля формы изделий 23349—78 Контроль неразрушающий. Дефектоскопы капиллярные. Общие технические требования и методы испытаний  [c.474]

В качестве агента, способного нести многоэлементную информацию о внутреннем строении, составе и свойствах непрозрачных тел и сред, могут быть использованы многие виды оптически сформированных или пр0странствен 10 распределенных потоков проникающих излучений (от гамма-квантов высоких энергий до р адио-волн миллиметрового и субмиллиметрового диапазонов, от упругих колебаний высокой частоты до корпускулярных излучений). Возможно использование для тех же целей нейтронных потоков и других частиц с еще более высокой проникающей способностью [118 171]. Большие перспективы для неразрушающего контроля имеют голографические методы.  [c.477]

Большую ценность представляет лазер для целей неразрушающего контроля качества изготовления различных материалов и изделий машино- и приборостроения. В настоящее время нашли применение методы лазерного контроля по оптическому поглощению, эллипсометрический, голографический, фотоэлектрический и методы на основе магнито- и электрооптических эффектов.  [c.4]

До сих пор одно Из главных применений голографии лежит в области голографического неразрушающего контроля (ГНК) и оказывается, что разработанные методы оптического ГНК или голо-графической интерферометрии являются действительно самым полезным результатом этих применений. Недавно эта тема была превосходно изложена в книге [19] полезной также является книга Кольера и др. [15]. Некоторые сведения по этому вопросу можно найти в 10.4 настоящей книги. Последующее содержание настоящего параграфа требует от читателя понимания таких терминов, как реальное время, двойная экспозиция и методы усреднения по времени, рассмотренные в указанной выше литературе. Поэтому мы здесь сконцентрируем внимание на некоторых конкретных системах ГНК, чтобы дать некоторое практическое руководство для конструирования обычных голографических систем.  [c.320]

В этом разделе мы обсудим такую интегральную установку, называемую гибридной системой голографического неразрушающего контроля (ГГНК). Система ГГНК объединяет три рассмотренных ранее голографических метода оптический, акустический и корреляционный. На рис. 16 представлены конкретные задачи, которые решаются с помощью этой системы.  [c.348]

Так как ультразвуковая и оптическая голография имеют много общего, полезно провести их сравнительный анализ. Замечательное свойство оптических голограмм — эффект объемности изображений, при этом глубина сцены позволяет голографировать объекты высотой около 50 мм, отстоящие друг от друга на расстояние 50 мм. Такое расстояние соответствует 10 длин волн, и если его перес-читать для ультразвука на частоте 10 Мгц в воде, то размеры объектов станут порядка 1370 мм и до такой же величины возрастут интервалы между ними. Типичный объект неразрушающего ультразвукового контроля, например большая раковина, достигает размера, равного 30 длинам волн, однако такие размеры в оптических единицах соответствуют микроскопическому объекту. Для ультразвукового импульса в 100 длин волн на частоте 10 Мгц разрешающая способность по дальности составляет - 8,5 мм в воде и более 25 мм в стали, что в оптическом диапазоне эквивалентно микроскопической толщине порядка 25 мкм. Из этого следует, что получение ультразвукового изображения при неразрушающем контроле имеет много общего с оптической микроскопией и ультразвуковая голограмма восстанавливает достаточно плоское изображение. Эффект объемности выражен значительно слабее, чем в оптической голографии. Таким образом, голографическое изображение не будет существенно отличаться от изображения, полученного каким-либо другим ультразвуковым методом.  [c.167]



Смотреть страницы где упоминается термин Голографические методы неразрушающего контроля : [c.84]    [c.209]    [c.69]    [c.286]    [c.346]    [c.348]    [c.292]    [c.254]   
Смотреть главы в:

Применение лазеров в машиностроении и приборостроении  -> Голографические методы неразрушающего контроля



ПОИСК



Голографический неразрушающий контроль

Контроль неразрушающими методами

Методы контроля

Тепловые методы неразрушающего контроля, ультразвуковая голография и голографическая интерферометрия



© 2025 Mash-xxl.info Реклама на сайте