Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чугун алюминиевый белый

Нужно модель так сконструировать, чтобы толшина стенок отливки оказалась равномерной и чтобы конструкция отливки обеспечивала возможность питания металлом наиболее горячих мест, создавая направленное затвердевание отливки. Для сплавов, обладающих большой усадкой (сталь, белый чугун, алюминиевая бронза и др.), это требование имеет особенное значение.  [c.311]

Примером коррозии могут служить ржавление стали или чугуна, образование белого налета на алюминиевых сплавах и зеленого налета — на медных и бронзо вых изделиях. В результате коррозии выводится из строя громадное количество металлических изделий, механизмов и машин, что наносит большой ущерб народному хозяйству.  [c.195]


Коррозией называется процесс химического или электрохимического разрушения металлов и сплавов вследствие взаимодействия их с окружающей средой. Разрушающей средой при коррозии металлов и сплавов являются кислород воздуха, газы, водные растворы солей, кислот и щелочей. Примером коррозии могут служить ржавление стали или чугуна, образование белого налета на алюминиевых сплавах и зеленого налета на медных и бронзовых изделиях. В результате коррозии выводится из строя громадное количество металлических изделий, механизмов и машин, что наносит большой ущерб народному хозяйству.  [c.194]

Хонингование деталей из обычного чугуна, алюминиевых сплавов, бронзы и латуни следует вести брусками, с зернами зеленого карбида кремния (КЗ). При высоких требованиях к шероховатости поверхности подобные бруски можно применять и при обработке стальных деталей. В этом случае хонингование ведут в два этапа предварительно — брусками с белым электрокорундом и окончательно — мелкозернистыми брусками с зеленым карбидом кремния.  [c.9]

Абразивные ленты изготовляют из ткани (например, са жи) или бумаги, на поверхность которой наносят с помощью клея (мездрового и др.) слой абразивных зерен нормальный и белый электрокорунд для обработки стали, ковкого чугуна и бронзы и карбид кремния для обработки серого чугуна, латуни и алюминиевых сплавов.  [c.165]

При испытаниях алюминия в среде фреона-12 в запаянных трубках при 65° и 113° С длительностью от 5 месяцев до 1 года явлений коррозии не наблюдалось. Свинец во фреоне-12 сначала в газовой фазе, а затем в жидкости покрывается серо-белым налетом хлорида свинца. Такой же налет наблюдается на свинцовых уплотнительных прокладках под крышками холодильных машин. В присутствии масла скорость образования осадка на свинце увеличивается во много раз, поэтому в качестве уплотнительного материала, работающего во фреоне-12 при 70—100° С, свинец не пригоден. Во фреоне-12 при указанных выше условиях испытаний на поверхности образцов, изготовленных из углеродистой стали холодного и горячего проката, чугуна и легированных сталей 18/8, коррозии не наблюдалось. Латуни темнеют во фреоне-12. В сухих фреонах коррозионные разрушения железа, меди, алюминиевых сплавов имеют место лишь при температурах выше 200° С, в присутствии влаги — при более низких (100° С) температурах [20].  [c.271]


Для изготовления отливок применяют большой ассортимент материалов серые и белые чугуны бронзы, латуни, литейные алюминиевые, магниевые и цинковые сплавы литейные тугоплавкие сплавы (на основе титана, ниобия, ванадия, молибдена, вольфрама).  [c.127]

I я 4 — сплавы Ре — N1 2 — белый чугун 3 — серый чугун 5 — алюминиевый сплав 6 — катаная медь  [c.60]

Усадка. В литейном производстве различают усадку сплава объемную и линейную последняя, в свою очередь, бывает свободной, а в случае выступающих частей отливки в форме — затрудненной. Объемная усадка почти в три раза больше линейной. Усадка в сплавах составляет (в %) стали — 1,5—2,0 чугуна серого — 1,0—1,3 белого — 1,3—1,8 бронзы оловянной — 1,4 алюминиевой — 2,2 латуни — 1,7—1,9 сплавов алюминиевых 0,9—1,35, магниевых — 1,35—1,9. Затрудненная усадка составляет 0,5—0,8 от свободной в зависимости от сложности конструкции отливки.  [c.93]

Для изготовления отливок применяются металлические сплавы серый и белый чугун, сталь, а также сплавы цветных металлов медные, алюминиевые, магниевые и др. Преимущественно используются серый чугун и сталь. Отливки из серого чугуна получают переплавкой (главным образом в вагранках) шихты, состоящей из 30—50% доменных, чушковых, литейных чугунов, 40—50% машинного лома и отходов литейного производства, 5—20% стали и ферросплавов по расчету.  [c.228]

Поршни из чугуна бело долговечны по сравнению поршнями из алюминиевых сплавов.  [c.86]

Размеры моделей должны быть больше тех же размеров отливки на величину усадки зависящей от конструкции отливок и химического состава металла (сплава). Практически принимают величину усадки для каждого размера в отливках из серого чугуна в пределах 0,8—1,2%, из белого чугуна 1,8—2,0%, из стали 1,6—2,2%, из медных сплавов 1,0—1,5%, из алюминиевых и магниевых сплавов 0,8—1,6%.  [c.265]

Ец и Ев — модули упругости материала охватывающей и охватываемой деталей, кгс/мм (для стали и стального литья = (1,96 -I- 2,1) 10 чугуна белого, серого, ковкого Е = = (0,81,6) 10 бронзы оловянистой =0,9-10 латуни == (0,9 1,4) 10 , алюминиевых сплавов = = 0,72-10 )  [c.213]

Высокой жидкотекучестью обладают алюминиево-кремнистые сплавы, кремнистая латунь, серый чугун, цинковые и оловянные сплавы. Среднюю жидкотекучесть имеют сгаль, белый чугун, латуни, кроме кремнистой, сплавы алюминия с медью и магнием. Шни-женной жидкотекучестью обладают некоторые магниевые сплавы (табл. 23).  [c.56]

В зависимости от условий работы вкладышей подшипников применяются следующие материалы 1) сплавы на железной основе — антифрикционный чугун и металлокерамические сплавы (пористые подшипники) 2) сплавы на медной основе — бронзы 3) сплавы на алюминиевой основе 4) белые подшипниковые сплавы на основе олова или свинца — баббиты.  [c.108]

Антифрикционные сплавы делятся на белые, желтые и черные. К. белым относятся сплавы на оловянной, свинцовой, оловянно-свинцовой, цинковой или алюминиевой основе — баббиты, ими заливают вкладыши подшипников к желтым — различные антифрикционные сплавы, основой которых является бронза. Группу черных составляют антифрикционные чугуны с нормальным и повышенным содержанием графита.  [c.33]

Рабочая полость кокиля должна выполняться с учетом усадки литейного сплава для конкретной отливки, расширения кокиля в результате его подогрева перед заливкой и толщины нанесенного слоя защитной краски или обмазки. При этом необходимо учитывать размеры и сложность конфигурации отливки, наличие в ней стержней и условия усадки (затрудненная или свободная), а также вид и в ряде случаев марку конкретного литейного сплава. Линейная усадка (%) различных сплавов может находиться в следующих пределах серого чугуна -0,5—1,25, белого чугуна (для отжига на ковкий) — 1,5—1,75, высокопрочного чугуна — 1,5—2, стали — 1,6—2,2 латуни — 1,6—2 бронзы — до 2,2 алюминиевых сплавов — 0,6—1,2. Во всех случаях процент линейной усадки уточняется по результатам опытных партий отливок.  [c.110]


Фрикционная коррозия (фреттинг-коррозия) заключается в окислении поверхности металла. На стальных и чугунных поверхностях образуются окислы железа (преимущественно Ре20з) в виде ржавых пятен, а при далеко зашедшей коррозии — в виде скоплений порошка коричневого цвета. На бронзовых поверхностях появляются зеленые пленки окислов. меди, на алюминиевых — белые пленки А12О3. Фрикционная коррозия, как и всякий вид коррозии, резко снижает циклическую прочность.  [c.337]

В качестве абразива для брусков применяется зеленый карбид кремния для чугуна и белый электрокорунд для стали на керамической связке, хотя некоторые заводы с успехом применяют также и бакелито-идитоловую связку в особенности на заготовках из закаленной стали (например, марки ЗОХГСА), а также из алюминиевых и магниевых сплавов. Необходимо отметить, что керамическая связка обладает рядом недостатков по сравнению с бакелито-идито-ловой. Из-за большой склонности к выкрашиванию хрупких зерен часто имеет место образование рисок и надиров на обрабатываемой поверхности. Это заставляет понижать удельное давление на бруски и выбирать бруски пониженной твердости. Первое приводит к уменьшению производительности процесса, а второе —к увеличению расхода брусков. Кроме того, при керамических брусках обязательно требуется проводить процесс в два приема (черновая и чистовая обработка), тогда как при органических связках можно ограничиться только одной операцией.  [c.489]

Для изготовления литых деталей применяют следующие сплавы чугуны (серый, белый, ковкий, модифицированный, высокопрочный магниевый, антифрикционный, жаростойкий, кислотоупорный, немагнитный и др.) углеродистую сталь для обеспечения повышенной прочности и пластичности легированную сталь для получения специальных свойств алюминиевые, магниевые и титановые сплавы для деталей с малым весом и высокой удельной прочностью медные сплавы (латунь, бронза) для изготовления отливок с повышенной электронроводностью, теплопроводностью и низким коэффициентом трения и др.  [c.93]

Литий — серебристо-белый очень мягкий металл, легко окисляющийся на воздухе. По ГОСТ 8774—75 устанавливаются три марки лития ЛЭ-1 (содержание чистого лития не менее 99,5%), Л9-2(98,8%) и ЛЭ-3 (98,0%). Применяется в машиностроении для дегазации и раскисления стали, чугуна, бронз и латуни, в баббитах — вместо олова для повышения температуры плавления и апти-фрикгцгонных свойств. Повышает качество алюминиевых, магниевых, медных, свинцовых и других сплавов, улучшает их антикоррозионные и литейные свойства и т. д., образует твердые припои для пайки без флюсов. Поставляетс.ч в виде чушек массой до 2,5 кг и хранится в плотно закрытых (запаянных) банках из белой жести (по 12—20 чушек — до 50 кг), залитых смесью трансформаторного масла (50%) и парафина (50%) с надписью Осторожно, от воды загорается .  [c.170]

Стали высоколегированные, подвергнутые длительному старению, с выделившимися карбидами, чугун белый и отбеленный, брОнзы многокомпонентные, силумины, алюминиевые сплавы отожже 1Ные, сталь ЭЯЗС после отпуска при б50 С (в электролите ХФС), чугун никелевый (в электролите ХФС)  [c.548]

Первые же эксперименты показали, что введение в расплав серого чугуна СЧ15 до 0,05 % НП ВН в виде разовых порций в объеме алюминиевого прутка привело к значительному уменьшению величины отбела — образование структуры белого чугуна в тонких сечениях отливок из серого чугуна — цементита РсзС, хрупкой фазы с высокой твердостью (НВ более 800 МПа) в отливках из серого чугуна. Из-за высокой твердости отбел затрудняет обработку резанием и может привести к хрупкому разрушению литых деталей в условиях эксплуатации. Оказалось, что при введении НП BN в 1,6 раза измельчается эвтектическое зерно, что, очевидно, и послужило причиной роста Ов на 19,5 % (со 174 до 208 МПа).  [c.281]

Плохая блеск слабый, заметна шероховатость либо блеск высокий, но поверхность сильно растравлена Высоколегированные стали, подвергнутые длительному старению, с выделившимися карбидами. Белый и отбеленный чугун, многокомпонентные бронзы. Силумины, отожженные алюминиевые сп. авы сталь Х20Н25С, никелевый чугун  [c.143]

Алитирование — насыщение стальных и чугунных изделий алюминием для придания поверхности большой стойкости против окисления при высокой температуре. Алитирование производят в твердой, газовой и жидкой средах и электролитическим путем. Для алитирования в твердой среде детали упаковывают в жаропрочные ящики с алити-рующей смесью (35—50% алюминиевой пудры и 65—50 белой обожженной порошкообразной глины) и нагревают до 900—1000°С в течение 10—15 час. После этого детали отжигаются. Глубина алитированного слоя достигает 0,1— 1,0 мм. При жидкостном алитировании детали погружаются  [c.51]

Литий — серебристо-белый, очень мгкий металл, легко окисляется на воздухе. Установлены по ГОСТ 8774-58 две марки лития, получаемого методом электролиза. Применяется в машиностроении для дегазации и раскисления стали, чугуна, бронз и латуни. В баббитах вместо олова для повышения температуры плавления и антифрикционных свойств. В электронной и полупроводниковой технике для повышения эффективности и прочности элементов и т. д. Повышает качество алюминиевых, магниевых, медных, свинцовых и других  [c.153]

При плохой подготовке поверхности для консервации на стальных и чугунных изделиях продукты коррозии появляются в виде налета ржавчины оранжево-бурого цвета, которая при сильном распространении переходит в сплошную массу наростов бурого или коричневого цвета продукты коррозии могут также иметь вид темных пятен или точек. На изделиях из алюминиевых и магниевых сплавов продукты коррозии имеют вид пятен или порошкообразного налета белого цвета при дальнейшем развитии коррозии появляются раковины, обычно заполненные продуктами коррозии (белого и серого цвета). На меди и медных сплавах продукты коррозии появляются в виде темных пятен или налета зеленого, реже черного цвета. В сплавах меди со свинцом (свинцовистая бронза) продукты коррозии имеют вид налета черного, темно-или светло-зеленого цвета. На лакированных или окрашенных изделиях появившиеся на поверхности металла продукты коррозии вызывают вздутие пленки, а затем шелушение ее. На йоверхности стальных оксидированных и фосфатированных изделий продукты коррозии появляются в виде ржавчины оранжево-бурого цвета или в виде пятен и точек по цвету мало отличающихся от цвета поверхности металла. На оцинкованных изделиях продукты коррозии на покрытии имеют вид пятен или точек белого, серого цвета или белого порошкообразного налета.  [c.22]


При конструировании отливок необходимо исходить из того, что толщина их стенок не должна быть. меньше определенной величины, зависяще от применяемого сплава, габаритов отливки и способа литья. Так, наименьшая толщина стенок отливок из чугуна составляет при мелком литье — 3—5 мм, при среднем — 6—10 мм и при крупном — 11—20 жж при изготовлении отливок из белого чугуна — 3—5 и 6—8 мм стальных отливок — 5—8, 9—15 и 16—25 мм, отливок из медных, оловянных и алюминиевых сплавов — 3—5 и 6—8 мм.  [c.96]

Усадка сплавов в процессе их кристаллизации вызывает сокращение объема и линейных размеров отливок. Изменение объема сплава в процессе кристаллизации часто происходит в несколько этапов. Например, в процессе кристаллизации белого чугуна вначале происходит расширение, затем усадка, после чего новое расширение в связи с перлитным превращением, а затем дальнейшая усадка до полного охлаждения отливки. Объемная усадка сплава вызывает появление пороков отливок в виде раковин и пор, а также влияет на возникноБен е в ннх внутренних напряжений. Величина усадки зависит от химического состава сплава, технологии его выплавки и составляет (в процентах), например, для серых чугунов 0,6—1,3 белых чугунов 1,6—2,3 углеродистых сталей (0,14—0,75 % С) 1,5—2 марганцовистых сталей (10—14 % Мп) 2,5—3,8 оловянных бронз 1,4—1,6 алюг.к- ниевых бронз 1,5—2,4 латуней 1,5—2,2 кремнистых латуней 1,6—1,8 алюминиевых сплавов 1—2 магниевых сплавов 1,1—1,9.  [c.132]

Твердые сплавы титанотанталовольфрамовой группы (ТТ7К12) используют для черновой обработки по орке стальных поковок, штамповок и отливок с раковинами и различными неметаллическими включениями, а также при работе резца с ударами. Минералокерамические материалы, предназначенные для изготовления режущего инструмента, выпускаются в виде пластин белого цвета, которые крепятся к державке инструмента. Наиболее распространенная марка ЦМ-332 (микролит) обладает высокой твердостью, теплостойкостью и износостойкостью. Хрупкость этого материала ограничивает его широкое применение. Сплав 11М-332 используют только для чистовой и получистовой обработки углеродистых и легированных сталей, медных и алюминиевых сплавов и чугунов.  [c.15]

Магний и его сплавы являются хорошими конструкционными материалами, так как магний в 4,5 раза легче железа и в 1,6 раза легче аЛ,юминия. Чистый магний — металл серебристо-белого цвета, температура плавления его 650° С, плотность при 20° С 1,738 г/см . Плотность магниевых сплавов 1,75—1,9 г/см по удельной прочности они превосходят некоторае конструкционные стали, чугуны и алюминиевые сплавы, обладают способностью поглощения вибрации, что очень важно для авиации и транспорта. Магниевые сплавы легко обрабатываются резанием и после надлежащей обработки не уступают по своей коррозионной стойкости алюминиевым сплавам. Магниевые сплавы широко применяют в авиационной промышленности, в приборостроении, в авто-и мотостроении, радиотехнике и других отраслях промышленности. Масса отливок из магниевых сплавов достигает 300—500 кг.  [c.370]


Смотреть страницы где упоминается термин Чугун алюминиевый белый : [c.89]    [c.93]    [c.308]    [c.354]    [c.85]    [c.404]    [c.671]    [c.69]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.44 , c.311 , c.437 , c.444 , c.450 ]



ПОИСК



Алюминиевые чугуны

Белов

Белые чугуны

Белый

Усадка чугуна алюминиевого белого

Чугун белый

Чугуны Белые чугуны



© 2025 Mash-xxl.info Реклама на сайте