Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тантал коррозия

Тантал. Коррозия в различных средах  [c.457]

Коррозия ниобия и тантала на воздухе. Поверхность образца 40 толщина пластинки 0,1 мм длительность испытаний 20 час.  [c.504]

В отличие от сталей имеются цветные металлы, в которых опасность коррозии при выделении водорода вызывается внутренним образованием гидридов. К этим металлам относятся, например, титан, цирконий, ниобий и тантал. Эти металлы могут представить интерес как вентильные при защите анодами с наложением тока от постороннего источника (см. 8.2.2.) и как материалы для химического аппаратостроения (см. 20.3.2).  [c.76]


Интересной областью применения является также защита тантала от водородного охрупчивания путем контактирования с металлами платиновой группы. Уменьшение водородного перенапряжения или смещение потенциала свободной коррозии в сторону более положительных значений ведет очевидно к уменьшению степени покрытия поверхности металла адсорбированным водородом и соответственно к уменьшению абсорбции [50].  [c.399]

I Тантал, как было указано выше, — наиболее стойкий в коррозионном отношении тугоплавкий металл. Он практически не взаимодействует с большинством органических и минеральных кислот и по химической стойкости приближается к платине. Тантал не склонен к точечной коррозии, что позволяет использовать его в тонких сечениях (что очень важно, учитывая высокую стоимость тантала) [32].  [c.48]

Данные по стойкости тугоплавких металлов в азотной кислоте представлены на рис. 47. Критическая концентрация азотной кислоты для Ti, который совершенно нестоек даже в слабых кипящих растворах серной и соляной кислот, 30%. В азотной кислоте с концентрацией 25% тантал, ниобий и цирконий абсолютно стойки. Если коррозионную стойкость оценивать не по уменьшению массы металла в зависимости от концентрации кислоты, а за критерий коррозионной стойкости принять глубину коррозии 0,25 мм/год, то в этом случае коррозионная стойкость того или иного металла будет характеризоваться одной цифрой — критической концентрацией кислоты.  [c.55]

Рис. 78. Влияние легирующих элементов на скорость коррозии сплавов тантала в кипящей Нз Рис. 78. <a href="/info/58162">Влияние легирующих элементов</a> на <a href="/info/39683">скорость коррозии</a> <a href="/info/168422">сплавов тантала</a> в кипящей Нз
Результаты большинства исследований подтверждают, что в средах, в которых тантал абсолютно стоек (скорость коррозии менее 0,01 мм/год), сплавы, с содержанием ниобия до 50 мас.% также устойчивы против коррозии. Их коррозионная стойкость соответствует нормам 1 балла (скорость коррозии менее 0,1 мм/год). К таким средам относятся кипящие растворы серной, азотной, соляной и фосфорной кислот, растворы щелочей, влажный хлор и его соединения и другие агрессивные среды.  [c.78]


Скорость коррозии сплавов тантала в кипящей фосфорной кислоте значительно меньше, чем в кипящей серной (рис. 77), но и в этом случае при легировании тантала коррозионная стойкость заметно ухудшается. Однако влияние легирующих элементов на коррозионную стойкость тантала, в кипящей фосфорной кислоте все же значительно слабее, чем в кипящей серной кислоте (рис. 78). При этом необходимо обратить внимание на различие масштабов по ординате на рис. 75 и 78. Существенной разницы во влиянии легирующих элементов на коррозионную стойкость сплавов тантала не обнаружено (расхождение кривых при испытании сплавов различных составов ненамного больше пределов естественного рассеяния результатов коррозионных испытаний).  [c.79]

На рис. 79 показана допустимая концентрация кипящей фосфорной кислоты, при которой скорость коррозии не превышает 0,1 мм/год (1 балл коррозионной стойкости). Преимущество, точнее, меньшее отрицательное влияние ниобия на коррозионную стойкость тантала по сравнению с другими легирующими элементами проявляется вполне определенно. Возможно, что и при работе в серной кислоте ниобий меньше, чем другие элементы, понижает коррозионную стойкость тантала, если ограничить скорость коррозии более строгими допусками.  [c.79]

Теплопроводность тантала в три раза выше теплопроводности нержавеющих сталей. Температура его плавления равна 2996°С. Тантал устойчив в кислотах "и других агрессивных средах. По устойчивости его можно сравнить с платиной и кислотостойким стеклом. Для тантала характерна равномерная коррозия. Он не поддается точечной коррозии. Тантал используется для обкладки других металлов.  [c.152]

Соединения тугоплавких металлов наряду с высокой температурой плавления и твердостью обладают коррозионной устойчивостью во многих агрессивных средах. В качестве коррози-онно-устойчивых материалов и покрытий используются соединения титана, тантала, ниобия, а также карбиды, силициды, бориды и нитриды. Карбид титана устойчив в концентрированной соляной кислоте, а карбиды бора и кремния отличаются высокой коррозионной устойчивостью во многих средах.  [c.185]

Скорость коррозии тантала в солевом растворе возрастает на порядок при повышении температуры от 20 до iOO (см. табл. 62). Можно предположить, что в горячей морской воде коррозия тантала тоже будет происходить быстрее, чем при обычной температуре. Не исключено также, что в горячей морской воде тантал будет склонен к щелевой коррозии.  [c.161]

Платина абсолютно не подвергается коррозии в морских атмосферах и в морской воде. В условиях погружения в морскую воду она чаще всего применяется в виде покрытия анодов в системах защиты с наложенным током (платинированный титан или тантал), а также в анодной системе свинец—платина. Все типы платинированных анодов для систем с наложенным током очень эффективны. Например, на титане или тантале платиновое покрытие толщиной 2,5 мкм позволяет использовать плотности тока свыше 10 А/дм . Потери при окислении для платиновых анодов в морской воде принимают равными 6 мг/А-год [117].  [c.163]

Коррозия тантала в неорганических (по данным кислотах и щелочных растворах [8])  [c.408]

Коррозионноустойчив в атмосфере сухого воздуха при обыкновенной температуре, неустойчив (тускнеет) во влажном воздухе. При нагревании энергично реагирует с кислородом, серой. С хлором реагирует при обыкновенной температуре. Медленно растворяется в азотной кислоте, быстро — в соляной, серной, царской водке, а также в щелочах и водных растворах аммиака. Вызывает коррозию большинства твердых металлов (кроме вольфрама и тантала)  [c.344]

При температуре 800° С в статических условиях в литии стойки молибден, вольфрам, ниобий, армко-железо. В загрязненном азотом литии при температуре 550° С не стойки никель и его сплавы, медь, алюминиевые сплавы [1,60]. Удовлетворительной стойкостью в литии обладают тантал, цирконий, титан. Вольфрам ограниченно стоек. Низкую стойкость в литии показали кобальт, ванадий, марганец, бериллий, хром и кремний [1,49]. В качестве защитной атмосферы при испытании образцов в литии могут применяться инертные газы гелий, неон и аргон [1,59]. Радиация на скорость коррозии конструкционных материалов в расплавленных натрии и литии почти не влияет [1,61], [1,62].  [c.51]


Впрочем, приведенные в литературе [36—39] данные по предельной концентрации кипящей H2SO4, при которой снижается сопротивление тантала коррозии, неоднозначны. В кипящей H2SO4 тантал стоек (скорость коррозии не более 0,1 мм/год, т.е. соответствует 1 баллу) при всех температурах и концентрациях кислоты. При длительном кипячении наблюдается охрупчивание Та, что связано с насыщением металла водородом. В уксусной и муравьиной кислотах и их смесях тантал абсолютно стоек.  [c.49]

В кипящей серной кислоте — одной из наиболее агрессивных сред кислотостойкая хромоникельмолибденомедистая сталь может работать при концентрации Н2О4 до 5%, сплав хастеллой (80% Ni, 20% Мо)—при концентрации до 20%, а тантал не подвергается коррозии в кипящей серной кислоте при концентрации до 80% (см. рис. 366).  [c.534]

Р меются сведения о возникновении в тантале при действии на иег О водорода хрупких разрушений вследствие наводорожи-вания металла, в особенности при нагреве. По этой причине не рекомендуется контактировать тантал с другими металлами, процесс коррозии которых протекает с водородной деполяризацией. Р1а рис. 198 показано влияние температуры на растворимость водорода в тантале. Тантал становится также хрупким в серной кислоте при температуре кипения и концентрации 79% и в концентрированной соляной кислоте при 190° С.  [c.293]

Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах Fe lg наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте.  [c.379]

Тантал и ниобии устойчивы на возду.хе при обычной температуре. Некоторое окисление (пленки побежалости) наблюдается при нагрованни металлов д.-> 200—300 С. Выше 500" С происходит быстрое окисление с образованием окислов ЫЬгОб и Ta Os. Данные коррозии тантала и ниобия иа ноздухе при повышен-ны.х температурах приведены в табл. 72.  [c.504]

Коррозия тантала в кислотах (образец — отожженный лист размером 0,15X11X105 мм поверхность очнщена травлением в растворе двухромовой  [c.508]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Рекомендации по легированию, которые приведены ниже, разработаны исходя из требования, что скорость коррозии сплава не должна превышать 0,1 мм/год, т.е. соответствовать 1 баллу коррозионной стойкости. Сплавы указанных составов предназначены для работы в кипящей кислоте эксплуатация сплавов при более низкой температуре обеспечивает дополнительный запас надежности. Выбор той или иной основы сплавов тугоплавких металлов и степени их легирования вследствие с оцественно различающейся стойкости этих металлов во многих случаях приобретает решающее значеш1е. Конкретную стоимость того или иного металла указать трудно, так как она непостоянна и зависит от многих обстоятельств технологического и конъюнктурного плана. В данном случае достаточно привести примерное соотношение стоимости тугоплавких металлов. Оно следующее Nb в 2 раза дешевле Та, W и Мо — в 10 раз, V — в 5 раз, Ti — в 100 раз. Однако необходимо учитьшать также и плотность тугоплавких металлов (см. табл. 1). Все указанные тугоплавкие металлы, кроме W, легче, чем Та. Весьма округленно плотность относительно тантала равна —4 для Ti, —3 для V, —2 для Nb, —1,5 для Мо, 1 для W. Следовательно, при изготовлении изделия (детали) не из тантала, а из титана его стоимость будет меньше в 400 раз, из ванадия — в 15 раз, из ниобия — в 4 раза, из молибдена — в 15 раз, из вольфрама - в 10 раз.  [c.81]

Вместе с тем, необходимо выделить группу легко пассивирующихся металлов и сплавов, коррозионная устойчивость которых в атмосферных условиях не уступает благородным металлам. К ним следует отнести титан, тантал, цирконий, ниобий, хром, алюминий. Пассивное состояние этих металлов обусловлено образованием на их поверхности химически инертных оксидных пленок. Пассивирующие пленки могут разрушаться под действием ионов галогенов (С1 , Вг , 1 , F ), поэтому в морской атмосфере на алюминиевых сплавах, нержавеющих сталях и других пассивирующихся системах могут появляться локальные очаги коррозии.  [c.90]


Тантал. Из всех тугоплавких металлов тантал обладает наиболее высокой стойкостью во многих агрессивных растворах. Такая инертность объясняется наличием на поверхности металла самозалечиваю-щейся пленки TajOs. При 84-дневной экспозиции в 3%-ном Na l при комнатной температуре скорость коррозии тантала составила всего 0,043 мкм/год (табл. 62). В морской воде с pH 8 тантал более инертен,  [c.160]

При рассмотрении общей коррозии аустенитных сталей необходимо также упомянуть о детальном изучении коррозии углеродистых сталей, так как они являются более перспективными и в некотором отношении служат как бы моделью для понимания коррозионных процессов в высоконикелевых сплавах. Изданный КАЭ США справочник по коррозии и износу материалов в водоохлаждаемых реакторах содержит богатую информацию по широкому кругу проблем применения [42]. В реакто-ростроении используется немного модификаций сплавов как из-за стоимости, так и для того, чтобы исключить или уменьшить содержание предшественников нежелательных изотопов (тантал, ниобий).  [c.253]

Цирконий, платина и гафний стойки в натрии до температуры 600—700° С, тантал в очищенном от кислорода натрии стоек до температуры 1000° С. Скорость коррозионного процесса бериллия становится значительной, если в натрии содержится 0,01% кислорода. Сурьма, висмут, кадмий, золото, иллий и чугун в натрии нестойки. На уран натрий воздействует только при наличии в последнем кислорода. При этом скорость реакции пропорциональна концентрации кислорода и при температуре 600° С для очищенного от кислорода натрия составляет 30—100 мк1мес. Торий и ванадий стойки в натрии до температуры 590° С. Скорость коррозии этих металлов 0,2 мг/см мес. Ниобий и вольфрам стойки в очищенном от кислорода натрии до температуры 900° С. Для кратковременной работы при температуре 1500° С пригоден молибден. Сварные соединения титана, циркония, ниобия, тантала, молибдена, никеля, выполненные аргонодуговой сваркой, стойки до температуры 800° С.  [c.49]

Как уже указывалось ранее, железо повышает коррозионную стойкость сплавов цирконий — олово в воде. Аналогичный эффект наблюдается и при введении в него никеля и хрома и притом не только в воде, но и в водяном паре при температуре 400° С. Более повышенная коррозионная стойкость сплавов в этом случае объясняется замедлением перехода к стадии ускоренной коррозии. Оптимальные концентрации легирующих компонентов в этих сплавах, по-видимому, следующие олова — 0,25—2,5% железа, никеля и хрома — 0,1—1,0%. При этом концентрация олова в цирконии зависит от количества загрязнений в нем. В сплаве с концентрацией 1% олова и 0,2—2% ниобия увеличение концентрации молибдена с 0,7 до 2% или тантала с 0,02 до 2,2% приводит к уменьшению скорости коррозии. Введение в сплав до 0,37% кислорода не оказывает влияния на стойкость сплавов этого же типа. Сплав циркалой 2 с концентрацией 1,5% олова, 0,12% железа, 0,10% хрома, 0,05% ниобия, <0,006% азота, <0,005% алюминия и <0,005% титана нашел широкое применение в ядерных реакторах с водяным охлаждением. Скорость коррозии этого сплава после выдержки в водяном паре при температуре 400° С в течение 41 суток составляет 1 мг1дмг -сут  [c.222]


Смотреть страницы где упоминается термин Тантал коррозия : [c.71]    [c.383]    [c.383]    [c.490]    [c.49]    [c.49]    [c.49]    [c.50]    [c.76]    [c.76]    [c.77]    [c.79]    [c.85]    [c.91]    [c.72]    [c.176]    [c.10]    [c.352]    [c.117]    [c.117]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.30 ]



ПОИСК



Коррозия бериллия тантала

Коррозия металлов например: Вольфрам Молибден Ниобий Тантал

ТАНТА

Тантал

Тантал Коррозия в кислотах и щелочных



© 2025 Mash-xxl.info Реклама на сайте