Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуляция добротности активная

Рис. 1.9. Схемы лазеров с модуляцией добротности (/ - активный элемент, 2 -лампа-вспышка накачки, 3 - выходное зеркало) на основе а - вращающегося заднего отражателя, б - затвора с электрооптической ячейкой, в - Показан ход лучей в призме - крыше в положении, когда добротность резонатора максимальна Рис. 1.9. <a href="/info/565190">Схемы лазеров</a> с <a href="/info/144341">модуляцией добротности</a> (/ - <a href="/info/185651">активный элемент</a>, 2 -лампа-вспышка накачки, 3 - выходное зеркало) на основе а - вращающегося заднего отражателя, б - затвора с электрооптической ячейкой, в - Показан ход лучей в призме - крыше в положении, когда <a href="/info/18564">добротность резонатора</a> максимальна

Модуляция добротности активная 270—273, 282, 325—349  [c.432]

Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]

МВт на 1 см поверхности. Объёмная оптич, прочность лазерных материалов обычно оказывается выше. Модуляция добротности резонатора осуществляется как пассивным образом (насыщающиеся поглотители), так и активным (электро- и акустооптич. модуляторы). Иногда применяют и механич. модуляторы, напр, вращающуюся призму.  [c.49]

Теория активной модуляции добротности  [c.296]

Для простоты ограничимся рассмотрением лишь активной модуляции добротности и в дальнейшем будем считать, что переключение добротности происходит мгновенно (быстрое переключение). С целью описания происходящих в лазере процессов можно снова воспользоваться уравнениями (5.18) и (5.24) соответственно для четырех- и трехуровневых лазеров.  [c.296]

В случае синхронизации мод при непрерывной накачке выходной пучок состоит из непрерывного цуга импульсов, в котором интервал между двумя соседними импульсами равен времени полного прохода резонатора 2L/ (см. рис. 5,46,6). Активная синхронизация осуществляется, как правило, либо модулятором на ячейке Поккельса, либо акустическим модулятором, что более общепринято, поскольку потери, вносимые этим модулятором в резонатор, меньше, Акустооптический модулятор, используемый для синхронизации мод, отличается от того, который применяется при модуляции добротности (см, рис, 5,30), поскольку грань, к которой прикреплен преобразователь, и противоположная грань оптического блока вырезаны параллельно друг другу. Звуковая волна, возбуждаемая преобразователем, теперь отражается назад противоположной гранью блока. Если длина оптического блока равна целому числу полуволн звуковой волны, то возникают звуковые стоячие волны, В этих условиях, если частота звуковой волны равна и, дифракционные потери будут промодулированы с частотой 2(о. Действительно, дифракционные потери достигают максимума в те моменты времени, когда имеет место максимум амплитуды стоячей волны.  [c.321]


В отношении конструктивных особенностей лазеры на александрите похожи на Nd YAG-лазеры. Хотя александрит может также работать в непрерывном режиме, меньшее сечение делает более практичным импульсную генерацию с высокой частотой повторения импульсов в режиме либо свободной генерации (длительность выходного импульса порядка 200 мкс), либо генерации с модуляцией добротности (длительность выходного импульса порядка 50 не). Характеристики импульсного лазера на александрите, а именно зависимость выходной энергии от входной и дифференциальный КПД практически аналогичны характеристикам Nd YAG-лазера с теми же размерами активного стержня. Были достигнуты средние мощности порядка 100 Вт при частоте повторения импульсов порядка 250 Гц. Оказывается, что лазеры на александрите успешно применяются в тех случаях, когда необходимо получить излучение с А, ж 700 нм и высокой средней мощностью (например, при лазерном отжиге кремниевых пластин) или когда необходимо перестраиваемое по частоте излучение (например, при лазерном контроле загрязнения окружающей среды).  [c.343]

В этом разделе мы рассмотрим работу лазерного усилителя с помощью скоростных уравнений. Допустим, что плоская волна постоянной интенсивности / падает (в точке z = 0) на лазерный усилитель длиной I вдоль оси z. Ограничимся рассмотрением случая, когда падающее излучение имеет вид импульса длительностью Тр, причем т, < < (т, Wp ), где ti — время жизни нижнего, а т — время жизни верхнего уровня активной среды и Wp — скорость накачки усилителя. Это, по-видимому, наиболее подходящий набор условий, необходимых для лазерного усиления. Он применяется, например, когда нужно усилить импульс излучения Nd YAG-лазера в режиме модуляции добротности. Поэтому мы не будем здесь рассматривать случай непрерывного режима усиления (стационарного усиления), а читателю советуем обратиться к соответствующей литературе [7,8].  [c.485]

К числу основных модулей относятся задающие генераторы с фиксированной длиной волны, выполненные на основе твердотельных или ионных лазеров. В последнее время особый интерес вызывают высокостабильные лазеры на гранате с неодимом, работающие в режиме активной синхронизации мод или в сдвоенном режиме — синхронизации мод и модуляции добротности. Преобразование частоты задающих генераторов, как правило с уменьшением длительности, осуществляется методами нелинейной оптики (генерация гармоник, параметрическое преобразование частот) или путем накачки перестраиваемых по частоте лазеров (на красителях, центрах окраски, полупроводниковых или ВКР лазеров).  [c.240]

Рассмотрим численные оценки основных характеристик лазера с модуляцией добротности. Для этого примем остаточные потери излучения в модуляторе добротности примерно равными потерям в активной среде (см. пример 2.2).  [c.137]

Противоположной такому подходу является ситуация, связанная с известной универсальностью, присущей твердотельным лазерам и заключающейся в том, что с помощью одного излучателя вариацией режимов накачки или модуляцией добротности резонатора можно в широких пределах изменять параметры излучения. Этим часто пользуются не только в лабораторных экспериментах, но и в условиях производства. В таком случае следует предусматривать возможность переналадки установки, т. е. смену элементов резонатора, регулирование параметров лазера, учитывающее изменения энергетических процессов в излучателе и термооптические деформации активного элемента.  [c.117]

Теоретические расчеты тепловых полей показали, что можно было ожидать малых термических искажений активного элемента. Это было подтверждено экспериментальными измерениями фокусных расстояний термических линз и расходимости лазерного излучения. Так, в режиме модуляции добротности резонатора оптико-механическим затвором при переходе от одиночных импульсов к режиму следования импульсов с частотой  [c.164]


При исследовании влияния на тепловыделение в активном элементе излучения генерации моноимпульсных лазеров для подсветки интерферометров необходимо использовать лазеры с модуляцией добротности наиболее удобными для этих целей являются лазеры на рубине.  [c.180]

Нестационарный режим работы лазера, осуществляемый в отличие от чаще всего нежелательного режима релаксационных колебаний целенаправленно, достигается путем возможно более быстрого изменения добротности резонатора лазера (т. е. потерь) или усиления. Принцип модуляции добротности заключается в следующем. Внутри лазерного резонатора в качестве дополнительного элемента помещается оптический затвор. При закрытом затворе генерация не может начаться, и под действием накачки активной среды возрастает инверсия населенностей, значительно превышая порог генерации лазера без введения дополнительных потерь в резонатор. Если затвор откры-  [c.89]

Учитывая уникальность и метода и аппаратурной реализации ЛП-лидаров, дадим для иллюстрации краткое описание ЛП-ли-дара с твердотельным лазером на рубине и выносным зеркальным отражателем. Резонатор лазера образован диэлектрическим зеркалом и выходным зеркалом, роль которого выполняет торец линзы с диэлектрическим покрытием. Предусмотрена система вакуумирования до 10- тор и заполнения заданным газовым составом с регулируемыми парциальными давлениями газов активной части резонатора и полости телескопа. Лазер работает в импульсно-периодическом режиме с частотой 0,5 Гц, без модуляции добротности. Часть излучения выводится через зеркало резонатора с коэффициентом пропускания 1—2 % и поступает на систему регистрации. В лидаре предусмотрены отображение на осциллографе кинетики мощности лазерной генерации, а также регистрация тонкой структуры спектра лазерной генерации с по-  [c.216]

Остановимся на активных методах модуляции добротности.  [c.178]

При активной модуляции добротности начальное превышение порогового уровня определяется длительностью первого этапа развития гигантского импульса (см. 19). Длительность этого этапа, в отличие от случая пассивной модуляции добротности, задается моментом выключения потерь. Если при перестройке длины волны сохраняется величина накачки и момент выключения потерь, т. е. длительность первого этапа, то запасенная в среде энергия остается неизменной. Поэтому при активной модуляции добротности, если уровень накачки остается неизменным, то перестройка длины волны генерации сопровождается падением энергии и мощности гигантского импульса, так как величина запасенной в активной среде энергии остается неизменной, а превышение усилением порогового уровня падает в силу падения сечения вынужденного излучения на крыле полосы люминесценции. Уменьшение же превышения коэффициентом усиления порогового уровня ведет к падению энергии гигантского импульса (см.  [c.204]

Вместе с тем развитие генерации при активной и пассивной модуляции добротности имеет и свои особенности, что связано с различным временным поведением добротности и инверсии во времени (рис. 5.4). Генерация импульса при пассивной модуляции начинается нз пичка свободной генерации, которая развивается в резонаторе при малом пропускании затвора. В результате разброс момента возникновения генерации вследствие флуктуации накачки или других причин, как это наглядно видно из рис. 5.4, может достигать  [c.203]

Неорганические жидкостные лазеры. Активные среды неорганических жидкостных лазеров представляют собой растворы соединений TR +-hohob в неорганических растворителях сложного состава. Лазерный эффект достигнут пока только для ионов Nd + (табл. 34.8). Генерация идет по четырехуровневой схеме на переходе / 3/2— - Ai/2 с поглощением света накачки собственными полосами поглощения Nd +. Неорганические жидкостные лазеры могут работать с циркуляцией рабочего гещества, дают высокие значения выходной мощности. Эти лазеры работают как в режиме свободной генерации, так и с модуляцией добротности.  [c.948]

Т. л. с успехом работают в режиме модуляции добротности резонатора, что позволяет генерировать гигантские импульсы, длительность и энергия к-рых зависят от скорости включения затвора и свойств активной среды. Обычные значения длительности таких импульсов (1 — 10)10 "с. Их пиковая моншость ограничивается при этом оптнч, прочностью активных и пассивных элементов резонатора, к-рая обычно составляет величину  [c.49]

Большое соотношение ширины контура усиления Т. л. и частоты межмодовых биений ( 10 ) позволяет достаточно просто осуществлять режим синхронизации мод и получать сверхкороткие импульсы длительностью 10 " — 10 с, ограниченной обратной шириной линии усиления. Так же, как и модуляция добротности, синхронизация мод в т. л. осуществляется как активным, так и пассивным образом, Т, л, может также работать в режиме усилителя  [c.49]

Рассмотренные до сих пор три устройства для модуляции добротности подпадают под категорию активных модуляторов добротности, поскольку ими необходимо управлять с помощью соответствующего устройства (источник питания ячейки Поккель-са, вращающий двигатель или ВЧ-генератор). Но модуляцию добротности можно также осуществить автоматически, не используя каких-либо управляющих устройств. Модуляторы такого типа называются пассивными модуляторами добротности.  [c.292]

В подавляющем большинстве этих экспериментов для реализахщи ОВФ используется так называемое четырехволновое взаимодействие. За подробностями отошлем к [76, 99], отметив, что вместо динамических аберраций в активной среде обычных лазеров здесь основным источником неприятностей становятся снижающие точность обращения процессы в нелинейной среде узла ОВФ. По этой при шне реализовать работающий в режиме свободной генерации (без модуляции добротности) твердотельный импульсный лазер с ОВФ-зеркалом пока удалось только М.С. Соскину и др. [114] при использовании предложенной нами в [66] схемы четырехволнового взаимодействия с автокомпенсацией макронеоднородностей в нелинейной среде.  [c.252]


Рнс. в.2. Принципы]геиерации световых импульсов а — амплитудная модуля-цня в пассивной системе б — модуляция добротности лазерного резонатора в — синхронизация продольных мод в активном резонаторе г — фокусировка во времени, быстрая фазовая модуляция и компрессия  [c.12]

Помеш,ение в резонатор частотного фильтра может радикально изменить ситуацию [6]. Авторы исследовали генерационные характеристики импульсного лазера на фосфатном стекле с активной синхронизацией мод и модуляцией добротности. В качестве фильтра использовался эталон Фабри — Перо толш,иной 0,25 мм с шириной полосы пропускания 15 см . Благодаря фазовой самомодуляции и ограничению полосы усиления длительность импульсов в цуге монотонно уменьшалась от 40 до 4 пс. Наивысшее спектральное качество достигалось в конце цуга.  [c.244]

Твердотельные лазеры с активной синхронизацией мод и модуляцией добротности. Преимуш,ества импульсных (высокая энергия) и квазинепрерывных (высокая частота повторения, стабильность) систем удачно сочетаются в непрерывно накачиваемых твердотельных лазерах, работаюш,их в режиме активной синхронизации мод и модуляции добротности. Одна из возможных схем лазера с двойной модуляцией представлена на рис. 6.4 [7]. Синхронизация мод осуществля-  [c.244]

Нелинейная фильтрация и компрессия импульсов твердотельных лазеров с активной синхронизацией мод и модуляцией добротности. Преимущ,ества лазеров, работаюш,их в режиме двойной модуляции, детально обсуждались в 6.2. Главное из них — сочетание высокой импульсной мош,ности порядка 10 Вт с килогерцовой частотой повто-)ения. Для сжатия высокоэнергетичных импульсов как на основной 57], так и на удвоенной частоте [58], приходится применять сравнительно короткие отрезки световодов, L 1—10 м. Ограничение на длину световода определяется порогом вынужденного комбинационного рассеяния и приводит к неравенству /эфф1 16/ с, где g 10 см/Вт, эфф — эффективная интенсивность ( 5.5). В этом случае реализуется бездисперсионная фазовая самомодуляция, которая приводит к снижению энергетической эффективности компрессии и контраста сжатого импульса. Кроме того, лазеры с двойной модуляцией имеют более высокий уровень флуктуаций параметров излучения, что, естественно, дестабилизирует параметры сжатых импульсов.  [c.262]

Усилитель. Проблемы разработки и расчета характеристик усилителя в лазерной системе, в том числе и на основе газов, возникают прежде всего тогда, когда от этой системы необходимо получить более короткие и более интенсивные импульсы излучения, чем при использовании одного генератора с применением техники модуляции добротности и сихронизации мод. Кроме этого усилитель широко используется в лазерных системах с частотной селекцией и селекцией пространственного распределения поля излучения. В таких системах исходное излучение формируется задаюш,им генератором небольшой мош,ности, в кототом разработанными методами селекции частоты и пространственного распределения сравнительно легко добиваются заданных характеристик излучения. Роль усилителя в такой системе сводится к усилению полученного от задаюш,его генератора излучения до нужного уровня мош,ности, причем искажения, вносимые усилителем во все характеристики исходного сигнала, не должны превышать пределов точности их экспериментальных определений. В этом разделе мы остановимся на анализе и расчете характеристик молекулярных газовых усилителей (МГУ) излучения СОа-лазера. Это опять же связано с широким кругом прикладных задач, в которых используют такие системы, начиная от лазерного термоядерного синтеза и прикладной нелинейной оптики в ИК-Диапазоне и кончая современной технологией. Сразу отметим, что весь алгоритм этого анализа и расчета может быть использован при разработке усилителя на любых газах с возбуждением его активной смеси электрическим разрядом. Обш,ей схемой анализа МГУ можно считатьструктурнуюсхему для лазеров (см, рис. 2.3). Для задач усилителя в ней исключается из описания Резонатор и вместо уравнения, описываюш,его режим генерации, в блоке Mil в полуклассическую модель вместо (2.21, г) и в балансную модель вместо (2.22, в) вводятся уравнения, описываюш,ие прохождение излучения в среде усилителя, а именно  [c.77]

Система уравнений (4.2)—(4.6) может быть использована для анализа многомодового режима как при пассивной модуляции добротности, так и при свободной генерации. Для этого следует лишь отбросить уравнение (4.5) и последний член в уравнении (4.6). Ниже будут изложены результаты численного исследования системы уравнений, аналогичной системе (4.4)—(4.6), но несколько упрощенной вследствие использования предположения о том, что внутри резонатора могут существовать только продольные моды (поперечный индекс опущен) и неоднородность продольного распределения плотности мод в резонаторе не учитывается ( F и приняты равными единице). Поскольку контур линий усиления в активной среде чаще всего может быть аппроксимирован лорен-цовской (однородное уширение — рубин, гранат и другие кристаллы) или гауссовской (стекла) зависимостью, имеющей максимум в центре линии усиления, а спектральные кривые поглощения фототропных веществ — некоторой линейной зависимостью с углом наклона, различающимся для разных красителей и рас-  [c.180]

Третий и четвертый члены в правой части уравнения (4.144) описывают изменение инверсии рабочих уровней под действием накачки и спонтанных переходов. Если длительность генерируемых импульсов настолько мала, что за время, равное их длительности, изменение инверсии под действием накачки и за счет спонтанных переходов невелико, то третьим и четвертым членами в уравнении (4.144) можно пренебречь. Это, как правило, справедливо для режима модулированной добротности. В случае модуляции добротности (исключая пассивные методы с использованием фото-тропных веществ) изменение добротности соответствует изменению во времени коэффициента полных потерь к от пот (О-Необходимо отметить, что V в уравнении переноса (4.146) — так называемая эффективная скорость фотонов в резонаторе с активным и фототропным элементами. Она позволяет избежать математических трудностей, связанных с тем, что активная и фото-тропная среды находятся в различных областях пространства и учитывает реальное замедление фотонов в активной среде (скорость распространения v — с/п) и в фототропной (скорость распространения Кф =с1пф). Для случая, когда используется полностью система уравнений (4.144) — (4.146), т. е. при введении фототропного затвора в резонатор, формула для эффективной скорости движения фотонов в резонаторе может быть записана в виде  [c.222]

Осуществить это легко с помощью выражения (i2.34), KOToipoe юпределяет пороговое значение энергии накачки импульсного лазера СО свободной генерацией. Применимость этого выражения для лазера с модуляцией добротности достаточно очевидна. Дело ъ том, что в обоих режимах генерации пороговое условие одинаково к концу импульса накачки в активной среде должна быть -создана пороговая инверсная населенность Л/ р.пор, соответствующая потерям излучения в резонаторе на элементах и выходном зеркале (модулятор добротности к концу импульса выключается). Поскольку в лазерах с модуляцией добротности выполняется н<.Ти то функция Пренебрегая малой критической  [c.136]


Поскольку при модуляции добротности достигается большой начальный коэффициент усиления активной среды /Со, то прозрачность выходного зеркала может быть заметно выше, чем при свободной генерации. Приближенный анализ оптимальных суммарных потерь излучения в резонаторе приведен в [41]. С точки -Зрения максимума внутрирезонатбрной мощности и минимума. длительности импульса излучения лазера потери резонатора должны быть такими, чтобы выполн ялось соотношение Npo/ p.nop = = 3,5 (при этом накачка считается заданной). В принятых нами обозначениях это соответствует превышению порога генерации - чх = 3,5. Для практики, как правило, интерес представляет не внутрирезонаторная, а выходящая наружу мощность излучения. В этом случае необходима искать оптимальное значение не пол- ных Кпу а только излучательных (через выходное зеркало) потерь резонатора Кр, считая внутрирезонаторные потери заданными, к .  [c.136]

Основой передающего устройства лазерного локатора GSF служила лазерная головка с рубиновым активным элементом, работавшая в режиме модулированной добротности с частотой повторения 1 Гц. Активный элемент длиной 70 мм и диаметром 9,5 мм излучал энергию в пределах от 0,9 до 1,2 Дж в импульсе при длительности импульса 24...30 не и времени нарастания переднего фронта 5...8 НС. Модуляция добротности осуществлялась призмой полного внутреннего отражения, вращавшейся с частотой 24 000 об/мин, я также дополнительной оптической ячейкой, содержавшей раствор криптоцианина и метанола, которая выполняла роль пассивного затвора. Расходимость лазерного излучения на выходе лазерной головки составляла приблизительно 10 радиан. С помощью десятикратного телескопа Галилея расходимость уменьшалась до величины 1,2-10 радиан. Часть выходного излучения лазерй с помощью кварцевой пластинки, ориентированной под углом Брюстера, отводилась на фотодиод. Сигнал с выхода фотодиода использовался, с одной стороны, для запуска счетчика измерения дальности, а с другой — для контроля выходной энергии лазерного импульса.  [c.187]

Характеристики применяемых для модуляции добротности затворов будут приведены в 5.2, а здесь мы несколько подробнее рассмотрим генерацию мопоимпульса при пассивной модуляции добротности просветляющимися фильтрами. В качестве таких фильтров в лазере на неодимовом стекле применяются растворы красителей или твердотельные затворы на основе центров окраски. Физика процесса генерации гигантского импульса состоит в это.м случае в том, что просветляющийся фильтр, пропускание которого возрастает при увеличении падающего на него излучения, играет роль ячейки положительной обратной связи. Процесс генерации можно также разбить на три этапа накопление инверсии, сравнительно длинный этап линейного развития генерации и короткий этап нелинейного развития генерации, на котором происходит высвечивание энергии моноимпульса. Для пассивной модуляции длительность линейного этапа Тд (т 1 мкс) в несколько раз больше, чем при активной, что имеет важное значение для селекции спектра излучения (см. ниже). Длительность моноимпульса ( и 10—100 нс) примерно такая же, как при мгновенном включении добротности, если только выполнено условие на сечение вынужденных переходов в фильтре Оф и активной среде а стф>ст.  [c.203]

При пассив1юй модуляции добротности линейный этап развития генерации протекает в условиях высоких потерь, что отличается от условий развития мопоимпульса при активной модуляции добротности (рис. 5.4). Вследствие этого существенно (на порядок) различаются длительности линейных этапов генерации и интенсивность излучения на границе линейного и иелииейного этапов. Длительность линейного этапа при пассивной. модуляции зависит от начального пропускания просветляющегося фильтра То, увеличиваясь примерно пропорционально То [81.  [c.204]

Зависимость параметров генерируе.мого излучения от периода или частоты модуляции обусловлена взаимосвязью импульсов через инверсную населенность. С этим же обстоятельством связана стабильность генерации серии, т. е. минимальный интервал времени между генерируемыми импульсами, при котором импульсы идут еще без пропусков. Выражение для следующее из анализа устойчивости, совпадает с формулой (2.82) в гл. 2 для времени задержки генерации. Из этой формулы следует, что частота следования импульсов, генерируемых таким методом, ограничена на уровне несколько десятков килогерц. Отметим, что генерация серий импульсов возможна не только при активной, но и при пассивной модуляции добротности с помощью просветляющегося затвора с большим временем релаксации. Максимальная частота генерируемых при этом серий импульсов определяется превышением порога и составляет около 10 кГц [17, 181.  [c.204]


Смотреть страницы где упоминается термин Модуляция добротности активная : [c.294]    [c.228]    [c.244]    [c.120]    [c.12]    [c.30]    [c.90]    [c.149]    [c.192]    [c.204]    [c.145]   
Физика процессов в генераторах когерентного оптического излучения (1981) -- [ c.270 , c.273 , c.282 , c.325 , c.349 ]



ПОИСК



Активная модуляция добротности резонатора

Добротность

Модуляция

Модуляция добротности

Модуляция добротности активная комбинированна

Модуляция добротности активная пассивная

Нелинейная фильтрация и компрессия импульсов твердотельных лазеров с активной синхронизацией мод и модуляцией добротности

Периодическая модуляция добротности при нагреве активного элемента

Режим генерации гигантских импульсов при активной модуляции добротности резонатора

Твердотельные лазеры с активной синхронизацией мод и модуляцией добротности

Теория активной модуляции добротности



© 2025 Mash-xxl.info Реклама на сайте