Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Бернулли для безвихревого течения

Уравнение (6-69) является уравнением Бернулли для установившегося течения несжимаемой жидкости при отсутствии сил трения. Постоянная будет изменяться от одной линии тока к другой в вихревом течении она будет постоянна всюду в поле безвихревого течения.  [c.137]

Решение задач безвихревого обтекания цилиндрических тел, помещенных между плоскопараллельными границами потока вязкой жидкости, этой воображаемой идеальной жидкостью может быть произведено обычными методами, изложенными в гл. V настоящей книги. В этом смысле рассматриваемое воображаемое движение можно назвать вязкой аналогией плоского безвихревого потока идеальной жидкости. Однако стоит отметить интересную особенность такого рода обтекания, заключающуюся в том, что для определения поля давлений нельзя уже пользоваться уравнением Бернулли, которого в этом случае, как и в других случаях вязких потоков, просто нет. Следует оговориться, что предыдущие рассуждения, использованные при выводе решений (152) и вытекающих из него следствий (153) — (155), теряют свою силу вблизи поверхности помещенного в поток цилиндрического тела, однако область эта по сравнению с размерами тела невелика, и ее влиянием на потенциальный поток можно пренебречь. Как показывают наблюдения, этот эффект становится заметным в кормовой области обтекаемого тела и в следе за ним. Аналогичные явления имеют место в течениях вязкой жидкости в пограничных слоях, теории которых посвящена следующая глава.  [c.410]


В случае баротропных течений при отсутствии внешних гравитационных сил для безвихревого движения [т. е. если выполняется уравнение (4)] можно получить интеграл уравнений движения, так называемое уравнение Бернулли  [c.21]

Несжимаемые течения. В случае однородных несжимаемых жидкостей можно обобщить уравнение Бернулли (4 ) так, чтобы учитывался эффект гравитации. Действительно, для безвихревых несжимаемых течений градиент соотношения  [c.22]

Так как при выводе интеграла (49) на с1х, йу, йг мы не налагали ограничений, то постоянная в уравнении (50) будет универсальной. Интеграл Лагранжа в форме (50) будет совпадать с интегралом Бернулли (33), полученным для безвихревого стационарного движения идеальной жидкости. Интеграл Бернулли (32), полученный интегрированием уравнений Эйлера вдоль линии тока, отличается от интеграла Лагранжа, так как постоянная в интеграле (32) может быть различной для разных линий тока. Движение жидкости, при котором постоянная в интеграле Бернулли универсальна для всех линий тока, есть потенциальное движение. Пользуясь уравнениями (48), можно доказать очень важную теорему Лагранжа если для движущейся жидкости при действии сил, имеющих потенциальную функцию, в какой-нибудь момент времени существует потенциал скоростей, то течение будет потенциальным во все время движения. В самом деле, уравнения (48) можно записать в следующей форме  [c.280]

Чаплыгин исследовал установившееся безвихревое дозвуковое течение нетеплопроводного идеального газа, для которого плотность и давление связаны законом адиабаты. Использование интеграла Бернулли и уравнения неразрывности приводит к нелинейным дифференциальным уравнениям для потенциала скоростей и функции тока в плоскости ху (физическая плоскость). Чаплыгин предложил метод линеаризации выведенных им уравнений, основанный на преобразовании годографа он вводит новые независимые переменные 0 и т = F /2p, где 0 и F — полярные координаты скоро-  [c.310]

Околозвуковое приближение. Ради простоты рассматривается случай безвихревого установившегося движения, описываемого интегралом Бернулли (11.19) и уравнением для потенциала скоростей (11.20). Околозвуковое приближение предназначено для упрощенного описания течений, возникающих при малых возмущениях звукового потока, в котором  [c.125]


Итак, были выведены три формы уравнения Бернулли для установившихся течений несжимаемой жидкости в поле силы тяжести. Для безвихревого течения согл с-  [c.137]

Некоторые авторы по аналогии с потенциалом сил определяют потенциал скоростей соотношением v = — grad <р. Однако это менее удобно, и в современной литературе последнее определение, как правило, не употребляется.) Соотношение (18.2) позволяет проинтегрировать уравнение (18.1), и мы получаем, таким образом, теорему Бернулли для безвихревого течения-.  [c.55]

Так как движение сообщается неподвижной жидкости, то, когда тело движется через нее, кинетическая энергия всей системы обязательно больше, чем энергия одного тела. Ввиду того, что работа, производящая этот излишек энергии, должна поставляться телом, усилие на тело зависит не только от скорости, но и от ускорения. Таким образом, если временное изменение кинематических соотношений включается в функцию потенциала или тока безвихревого потока, то для определения кинетической энергии жидкости можно использовать форму уравнения Бернулли для неустановившегося двилеения. Кирхгоф упростил эту проблему, доказав, что полное усилие может быть выражено в членах присоединенных масс или приращений действительной массы тела, пропорциональных объему и плотности вовлеченной в дви-леение жидкости коэффициент пропорциональности изменяется с изменением формы тела. Тэйлор увеличил ценность понятия присоединенных масс, выразив их в членах особенностей, порождаемых телом. Наконец, Легалли установил прямое соотношение между силами, действующими на тело, и особенностями. Таким образом, если распределение особенностей задано или установлено одним из методов решения уравнений течения, как это сделано в следующем разделе, тогда силы и моменты могут быть определены непосредственно без нахождения распределения давления.  [c.92]

Заметим, что при выводе уравнения Бернулли (6-61) для трехмерного течения были сделаны предположения, что жидкость является несжимаемой, а течение — установившимся и безвихревым. Единственное требование, предъявлявшееся к вязкости, — чтобы она была постоянной. Действительно, нет необходимости в каких-либо дополнительных предположениях, так как вязкие члены выладают ввиду тО(ГО, что V v=0. Результат, следовательно, приложим как к вязким, так и невязким жидкостям до тех пор, пока выполняются условия несжимаемости и установившегося безвихревого течения. Для вязких жидкостей, конечно, градиенты скорости всегда  [c.133]

Ввиду симметричности входящих в эти уравнения компонентов вихря и скорости ранее обоснованная возможность интегрирования их вдоль линий тока остается справедливой и для вихревых линий. Иными словами, уравнение Бернулли применимо ко всем точкам поверхности тока, составленной из двух пересекающихся семейств линий тока и вихревых линий. Однако в общем случае уравнение (24) применимо только тогда, когда все левые части вышеприведенных уравнений равны нулю. Это условие выполняется, если вихревые линии и линии тока совпадают — явление, известное под названием течения Белтрами — Громека, которое, по-видимому, реализуется только при неустановившемся течении. С другой стороны, как показал сам Эйлер, если имеем потенциальное течение, то все компоненты вихря равны нулю, что также обусловливает исчезновение левых частей уравнений. Таким образом, уравнение Бернулли применимо преимущественно к безвихревому потоку, подробное рассмотрение которого можно найти в следующей главе. Из выражения, данного в п. 24 для ускорения относительно подвижных координат, видно, что уравнение (24) также применимо в случае, если заменяется  [c.61]

Мы хотим поставить такую вариационную задачу, которая выделила бы класс безвихревых течений как класс течений, дающих минимум некоторому функционалу над полем скоростей. С этой целью удобно поставить в соответствие каждому полю скоростей некоторое полё плотности . Мы воспользуемся для определения этого поля уравнением Бернулли )  [c.144]


В случае безвихревого изэнтропического течения линии тока перестают быть характеристиками (условия Я = onst, S = onst дают информацию, достаточную для определения производных от параметров течения, заданных на линии тока). Воспользовавщись уравнением Бернулли (37.3), мы можем исключить р из уравнения (49.7), после чего получим, что на линии Маха имеет место соотношение  [c.154]


Смотреть страницы где упоминается термин Уравнение Бернулли для безвихревого течения : [c.129]    [c.16]    [c.266]    [c.161]   
Механика жидкости (1971) -- [ c.132 ]



ПОИСК



Бернулли

Течение безвихревое

Уравнение Бернулли



© 2025 Mash-xxl.info Реклама на сайте