Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чувствительность композита

НОЙ нагрузке. Полученные результаты показали, что время до разрушения при усталостном нагружении у композитов с наружными слоями, ориентированными в направлении нагружения, на несколько порядков больше, чем у материала с ориентацией наружных слоев в направлении, перпендикулярном оси нагружения. Величины К, рассчитанные при помощи / -кривых, также указывают на чувствительность композита к ориентации внешних слоев относительно направления нагружения. Можно полагать, что обнаруженный эффект в значительной мере зависит от наличия концентратора напряжений.  [c.244]


Чувствительность композитов к воздействию воды под  [c.516]

Чувствительность композитов к погодным условиям  [c.518]

Дело в том, что несущая способность тонкостенных конструкций, работающих на устойчивость, из-за относительно низкой жесткости стеклопластиков часто исчерпывается задолго до достижения напряжениями предельных значений. При переходе к более толстостенным конструкциям все сильнее начинают проявляться такие отрицательные особенности (неизбежные при традиционных схемах армирования ровницей или тканью), как слабое сопротивление межслойному сдвигу и поперечному отрыву. Поэтому и в более толстостенных конструкциях не удается полностью использовать потенциальные возможности волокнистых композитов в направлении армирования. Необходимо также иметь в виду чувствительность композитов  [c.9]

При нерациональных режимах облучения повышается чувствительность твердых сплавов к циклическим и ударным нагрузкам. Разрушение инструментального материала в этом случае происходит по механизму хрупкого скола. Этому способствуют концентраторы напряжений в виде различных дефектов структуры. Помимо режимов облучения, следует принимать во внимание и марку твердого сплава, что связано с изменением трещиностойкости композитов после лазерной обработки.  [c.226]

Глава начинается с обсуждения основных термодинамических свойств металлов и окислов, причем основное внимание уделено тем окислам, которые могут быть использованы в виде волокон и покрытий. Затем рассмотрено применение методов термодинамики твердых растворов для оценки стабильности композитов. В обзорном плане изложены обширные литературные данные о взаимодействии жидких металлов с окислами, полученные при изучении процессов изготовления керметов и пропитки усов расплавом. Цель этого обзора —обобщить имеющуюся информацию о смачивании окислов жидкими металлами и вывести основные закономерности. Далее проанализировано соотношение между смачиванием и формированием связи в композитах. Применительно к режимам изготовления и условиям службы композитов рассматриваются диффузионная сварка и твердофазные реакции, причем более подробно— кинетика реакций металл — окисел и характеристики поверхности раздела. Глава завершается анализом имеющихся литературных данных о механических свойствах, чувствительных к состоянию поверхностей раздела. Этот анализ ограничен несколькими металлическими системами, упрочненными окислами, которые изучены в настоящее время.  [c.308]


Периодически повторяющийся элемент (рис. 6) представляет собой типичную модель, применяемую в микромеханике для определения механических свойств композитов. Используя данную модель и предполагая хорошую адгезию на поверхности раздела, можно на основе простого правила смесей [16] вывести выражения для расчета модуля Юнга композита и коэффициента Пуассона. На рис. 7 представлены расчетные и экспериментальные данные для эпоксидного композита с волокнами из Е-стекла. Хорошее согласие теории с экспериментом позволяет сделать вывод, что предположение о хорошей адгезии на поверхности раздела в композите вполне оправданно или что параметры, указанные на рис. 7, возможно, не чувствительны к нарушению адгезионного соединения.  [c.49]

На рис. 8 приведены теоретические и экспериментальные крит вые зависимости поперечного модуля Юнга. К сожалению, действительное содержание пор установлено не было. Важный вывод, который можно сделать, исследуя эти кривые, состоит в том, что поперечный модуль Юнга композита является чувствительным, хотя и косвенным, параметром при оценке качества адгезионного соединения на поверхности раздела.  [c.49]

Феноменологический критерий разрушения, обсуждавшийся в предыдущем разделе, дает грубую оценку разрушения, поскольку здесь предполагается, что образование микроскопических трещин занимает большую часть жизни образца и после слияния в макроскопическую трещину разрушение происходит мгновенно. Однако в реальных конструкциях макроскопические трещины могут появляться и в процессе изготовления, и в процессе службы. Детальное рассмотрение квазистатического роста трещины может дать полезную информацию относительно снижения чувствительности материала к трещинам и для установления критических состояний трещины. Характер динамического распространения трещин, даже в изотропных материалах, изучен не так подробно, как квазистатический рост трещин, поэтому в настоящее время, по-видимому, преждевременно рассматривать применимость полученных данных к описанию разрушения композитов. Мы будем исследовать только квазистатический рост или устойчивость существующей в композите трещины.  [c.214]

Большой класс связующих представляют полимеры. Это вязкоупругие материалы, которые даже при комнатной температуре под нагрузкой в различной степени ползут. Если в них поддерживается постоянная деформация, то напряжения релаксируют или до нуля, или до некоторого другого значения. Их диаграммы напряжение — деформация чувствительны к скорости деформации, а модуль имеет тенденцию к увеличению с увеличением этой скорости. Короче, это материалы со свойствами, зависящими от времени. Соответствующие свойства, которые позднее будут использованы при разработке временной модели композитов с полимерными матрицами, представлены в разд. III.  [c.280]

В композитах серебра, содержащего более 10% вольфрамовой проволоки, разрывы волокон были локализованы в окрестности поверхности разрушения композита [39]. Авторы [39] пришли также к выводу о том, что усталостная прочность волокнистых композитов относительно нечувствительна к поверхностным дефектам, что находится в разительном контрасте с чувствительностью усталости металлов к несовершенствам поверхности.  [c.398]

Усталостные трещины в металлах почти всегда возникают на свободных поверхностях, и поэтому усталостная прочность металлов очень чувствительна к поверхностным дефектам. В металлах, армированных волокнами, усталостные трещины могут зарождаться в двух основных местах на свободных поверхностях и на границах раздела волокна и матрицы. От свойств волокна и границы раздела волокна и матрицы зависит, будут ли последние служить местами зарождения усталостных трещин или нет. Высокопрочные хрупкие волокна, имеющие малую деформацию разрушения и большой статистический разброс прочности на разрыв (см., например, [50]), могут разрываться при растяжении в произвольных слабых точках по всему композиту. Каждый такой разрыв волокна является возможным местом зарождения усталостных трещин в металлической матрице. Затем там в результате локальной концентрации напряжений происходит классическое явление усталости.  [c.406]


Наличие остроконечных поверхностных дефектов и разорванных внутренних волокон частично объясняет пониженную чувствительность волокнистых композитов к иным поверхностным дефектам, например царапинам или раковинам.  [c.409]

Механизмы понижения усталостной прочности композитов еще определяются, но уже ясно, что (а) усталостная прочность композитов, подобно усталостной прочности металлов, очень чувствительна к структуре, (б) можно управлять микроструктурами поверхностей раздела для того, чтобы оптимизировать сопротивление материала усталостному разрушению, и (в) детали микроструктуры, имеющие критическое значение для усталостной прочности, обладают размерами, измеряющимися несколькими сотнями ангстрем (10 см).  [c.427]

Ббльшая сила воздействия паров воды на скорость роста усталостных трещин в композитах была приписана чувствительности прочности волокна бора к парам воды. Границы раздела волокон и матрицы не играли здесь никакой роли, так как было замечено, что трещины растут в алюминиевой матрице.  [c.431]

С учетом требований современной техники силовая конструкция из композита должна состоять из надежных элементов, иметь по возможности точно определенный, допустимый срок эксплуатации и быть мало чувствительной к наступлению предельного состояния в отдельных элементах. Таким образом, дальнейший прогресс в использовании композитов во многом зависит от создания работоспособного метода анализа процесса разрушения, который позволит проектировщику получить количественную оценку предельных напряжений и качественную картину развития процесса разрушения элементов конструкции и конструкции в целом. В предлагаемой главе рассмотрены некоторые вопросы, связанные с механизмами разрушения в композитах под действием растягивающих, сжимающих и комбинированных нагрузок, как статических, так и циклических.  [c.34]

Проблема оценки чувствительности конструкций из композита к повреждениям настолько сложна, что неясными являются даже подходы к ее решению. В сложившейся ситуации целесообразно попытаться применить методы расчета и анализа, разработанные для металлов. Если использованный метод окажется работоспособным, то открывается возможность добиться успеха сравнительно малыми усилиями. Для задач усталости и разрушения композитов разумно попытаться использовать методы механики разрушения, развитые применительно к металлам. Безусловно, следует быть готовым к тому, что перенос этих методов на новый класс материалов не всегда окажется  [c.51]

В противоположность обычным металлам, у которых чувствительность к концентраторам растет с ростом прочности, у некоторых композитов рост несущей способности сопровождается увеличением вязкости разрушения ).  [c.52]

Адгезивы этого типа были первыми, обладающими высокими механическими свойствами при повышенной температуре и высокой прочностью склейки наряду с хорошо контролируемой текучестью. К недостаткам следует отнести высокую чувствительность композитов к влажности. Существует также возможность двухсторонней обработки, когда наружная сторона несущей плоскости обрабатывается винилфенольным связующим, а на внутреннюю, соединяющуюся с заполнителем сторону наносят модифицированное эпоксидное связующее, имеющее очень высокие показатели прочности на отрыв. ,  [c.360]

В следующих испытаниях промежутки между стеклянными брусками были увеличены за счет применения пластмассовых брусков вдвое большей ширины. Последовательность фотоупру-гих интерференционных картин (рис. 41) показывает высокую концентрацию напряжений у конца распространяющейся трещины. Одной из важных характеристик, наблюдаемых на этих интерференционных картинах, является угол наклона петель, образованных полосами вблизи конца трещины. Здесь наблюдается угол наклона более 90", что заметно отличается от известных результатов для однородных материалов. Герберих[28] наблюдал углы 45 и 60° для медленно растущих внутренних и краевых трещин соответственно. Уэллс и Пост [67] приводят значения угла, достигающие 80° для бегущих трещин. Как показал Ирвин [38], угол наклона изохроматической петли 0ш, максимальный модуль радиуса-вектора этой петли Гт и порядок полосы (или, что эквивалентно, максимальное касательное напряжение Тщ) связаны с коэффициентом интенсивности напряжений К или силой растяжения трещины Т. Было установлено, что сила ST очень чувствительна к изменениям угла наклона, Наблюдаемое в данном опыте значение этого угла указывает на большое различие в величине силы ST между моделью композита и однородным материалом.  [c.546]

Можно ожидать, что разрушение по поверхности раздела легче происходит при определенных условиях нагружения. Обычно механические испытания композитов начинают с продольного растяжения, но такие условия испытания могут не быть наиболее чувствительными к свойствам поверхности раздела. Под действием продольных напряжений передача нагрузок между волокном и матрицей может осуществляться на больших длинах, и поэтому напряжения сдвига на поверхности раздела могут быть невелики. С другой стороны, поперечное нагружение неблагоприятно для передачи нагрузки по длине волокна, и условия нагружения поверхности раздела в этом случае могут быть более жесткими. Приложение к композиту внеосных напряжений может создать еще более жесткое напряженное состояние на поверхности разде--ла оно зависит от относительной прочности поверхности раздела  [c.24]

Характеристики продольного растяжения менее чувствительны к прочности связи, чем другие механические свойства. Бэйкер и Крэтчли [2] показали, что для оптимизации усталостных характеристик композита А1—Si02 необходима много более прочная связь, чем для оптимизации продольных. Проблема оптимизации связи наиболее актуальна для систем псевдопервого класса, И для полного понимания их поведения многое еще предстоит сделать.  [c.182]


Можно ожидать, что прочность поверхности раздела особенно чувствительна к испытаниям при циклическом нагружении. Соответствующих данных мало, однако они, несомненно, свидетельствуют о высокой прочности связи. При усталостном разрушении пластинчатого композита А1 — AlaNi [72] одна или несколько трещин распространяются по зонам скольжения в матрице н значительного расслаивания не происходит. Аналогичным образом протекает усталостное разрушение пластинчатого композита Ni — NigNb, существенно отличающегося в других отношениях [37]. В обоих случаях время до разрушения при высоких напряжениях и малом числе циклов определяется сопротивлением разрушению армирующей фазы, а время до разрушения при малых напряжениях и большом числе циклов — распространением усталостной трещины в матрице. Ни в том, ни в другом случае расслаивание не является определяющим механизмом.  [c.259]

Келли и Дэвиса i[20]. Однако применительно к указанным системам в этих работах не затронуты вопросы снижения прочности волокон при изготовлении композита и ожидаемого изменения таких механических свойств, как, например, поперечная прочность, которые наиболее чувствительны к процессу образования связи на поверхности раздела. Как будет показано ниже, на эти вопросы, по крайней мере для матрицы Ni — Сг, можно ответить на основании данных работы Мегана и Харриса [31].  [c.339]

Исходя из данных о продольной прочности и модуле композита Ti-6A1-4V — 22 об. % АЬОз, Тресслер и Мур [50] сделали вывод о справедливости правила смеси для модуля. Определенная ими прочность волокон ( 211 кГ/мм2) указывает на очень малую степень разупрочнения волокон, а отсутствие их выдергивания свидетельствует о достаточно высокой прочности связи с матрицей. На основании результатов испытаний на растяжение композита после термообработки авторы пришли к предварительному (поскольку образцы не были достаточно хорошо сварены) заключению о меньшей чувствительности к степени взаимодействия Ti-матрицы с волокнами AI2O3 по сравнению с волокнами В или B/Si .  [c.346]

Хотя теория деформируемого слоя оказалась непригодной для композитов, армированных стекловолокном, из-за чувствительности каучукоподобных полимеров на поверхности стекла к действию воды, тем не менее она оказывается полезной при раосмотре-нии связи между жесткими полимерами и гидрофобным волокном, подобным графиту. Свойства композита, состоящего из графита и твердого полимера, ухудшаются в основном под действием термических напряжений, так как графит имеет очень низкий коэффициент линейного Теплового расширения. В данном случае невозможно гидролитическое равновесие на поверхности раздела, которое способствовало бы снятию напряжений по химическому механизму. В то же время благодаря наличию деформируемого слоя возможна меканиЧёскАя релаксация напряжений, так как связь органических. полимеров с графитом не чувствительна к воздействию воды.  [c.38]

Изучалась температурная зависимость прочности ко<мпозита при межслойном сдвиге. Как видно из рис. 34, межслойная сдвиговая прочность остается почти неизменной в интервале температур от —54 до 82 °С. Когда температура достигает 177 °С, прочность снижается почти до нуля. Следует отметить, что адгезионная связь, судя по результатам измерения прочности при межслойном сдвиге, продольном сжатии и статическом изгибе, не чувствительна к нагреву до температуры, вдвое меньшей, чем температура отверждения композита. При более высокой температуре адгезия на поверхности раздела постепенно ослабевает. Испытания на предел проч1ности при продольном сжатии и межслойном сдвиге указывают на аналогичное поведение.  [c.76]

Наряду со стекловолокном основными упрочнителями композитов являются углеродные (графитовые) волокна, нитевидные кристаллы и волокна нз высокопрочных металлов, таких, как бор. Эти волокна менее чувствительны к воде, чем стеклянные, уже потому, что они не так гидрофильны. Вайетт и Эшби [78] сравнивали действие воды на полиэфирные композиты, армированные волокнами углерода и Е-стекла. В обоих случаях наблюдалось набухание смолы, однако интенсивно ра сслаивался только стеклопластик. Предполагалось, что волокна из металлов или из окислов металлов не более гидрофильны, чем кварц, а, как уже отмечалось [2], кварцевые волокна не расслаиваются при выдержке композита в воде. Тем не менее металлы и окислы металлов (в отличие от углерода) подвержены коррозии под напряжением [76]. Очевидно, накопление воды на поверхности раздела между окислом металла и полимером, которое является следствием гидрофильного загрязнения, приводит к образованию дефектов и разрыву волокна.  [c.115]

Перечисленные здесь вопросы вполне разрешимы, и возможно иопользование различных экспериментальных методов, обоснованных как с точки зрения химии поверхности, так и механики разрушения наибольшего успеха следует ожидать там, где решения этих проблем взаимосвязаны. Эмпирические методы также могут оказаться полезными при решении вопроса о существенном уменьшении чувствительности композиционных материалов к воздействию влаги. Необходимо подчеркнуть, что создание новых композитов, к которым предъявляются 01пределенные технические требования, возможно только при условии, что разработка этих материалов будет провадиться на научной основе.  [c.116]

Положительно заряженные силаны (№ 1, табл. 1) весьма чувствительны к изменению pH раствора при контакте с поверхностью кремнезема улучшение свойств композитов наблюдается с понижением pH от 12 до 2. Неионогенные силаны (№ 4, табл. 1) менее чувствительны к изменению pH среды, но тоже более эффективны при рНсй2 (рис. 3).  [c.192]

Максимальный эффект при аппретировании волокна, определяемый по повышению прочности композитов как в исходном, так и во влажном состояниях, достигается при использовании неполярных смол. Хотя сами смолы весьма устойчивы к воздействию влаги, силы Ван-дер-Ваальса между ними и стеклом очень чувствительны к действию воды, присутствующей на поверхности минерального наполнителя. Влияние силановых аппретов наглядно подтверждается данными Вандербильта [50] для стеклопластиков на основе аппретированных и необработанных волокон и различных смол (рис. 6). Абсолютные значения прочности стеклопластиков на основе аппретированной силаном стеклоткани в исходном и влажном состояниях оказались примерно равными (- 56 кгс/мм ). Это дает основание полагать, что силанолы обеспечивают на поверхности раздела высокую концентрацию гидроксильных групп, защищающих стеклопластики от воздействия воды в процессе изготовления. Наличие силанольных групп на поверхности раздела позволяет в наибольшей степени использовать свойства смолы. Если передача напряжений через поверхность раздела препятствует дальнейшему улучшению механических свойств и водостойкости композитов со стеклянными наполнителями, то с помощью силановых аппретов отрицательное воздействие этого фактора устраняется или уменьшается.  [c.199]

Влияние воды на армированные минеральным наполнителем полимерные композиты может быть довольно сложным в зависимости от природы полимера и наполнителя. У таких чувствительных к воде полимеров, как найлон, адсорбция воды вызывает набухание и снижение модуля упругости. Термореактивные смолы, например полиэфиры, в горячей воде вначале набухают, а затем сжимаются до исходного объема в результате выделения растворимых веществ и процесса полимеризации остаточных функциональных групп [3]. Пер1Воначальное набухание в воде приводит к снижению усадочных напряжений в полимере, и поэтому механические свойства композитов могут улучшаться при кратковременной выдержке, пока не начинается деструкция полимера или взаимодействие воды с поверхностью раздела. Полиолефины и кремнийорганические смолы относительно инертны к воздействию воды.  [c.209]


Большинство композитов, описанных в настоящей главе, есть непрерывные однонаправленные волокнистые композиты (НОВК), имеющие большую объемную долю волокон. В результате продольная прочность в основном определяется прочностью самих волокон. Таким образом, если волокна обладают свойством ползучести, то им обладают и композиты на их основе. В небольшом числе работ по композитам, армированным вольфрамом и бериллием, обнаружено разрушение при ползучести. С другой стороны, разрушение под нагружением может появиться как результат комбинации двух факторов статистической прочности хрупких волокон и временных свойств вязкоупругой матрицы. Такая комбинация создает вероятность непрерывного изменения напряженного состояния внутри композита, даже при испытании на разрушение. Эти изменения также приводят к явлению запаздывания разрушения. Поэтому очень важно рассмотреть как матрицу, так и волокно при изучении длительной прочности композита, причем нужно иметь в виду, что матрицы оказывают очень незначительное влияние на кратковременную продольную прочность композитов, но играют очень важную роль в его длительной прочности. Часть работ посвящена исследованию эффектов скорости деформации на прочность НОВК оказалось, что только армированные стеклом композиты, по-видимому, чувствительны к изменениям скорости.  [c.269]

В работе [20] также найдено, что анергия удара увеличивается с увеличением объемного содержания волокон, и ее величина мало чувствительна к надрезу. Было сделано важное наблюдение, заключающееся в том, что энергия удара нелинейно зависит от толщины образца это препятствует простому пересчету результатов по масштабной шкале. Подобное же исследование проведено в [63] на композитах, изготовленных из угольного волокна типа 2 Графил НТ (компания Коуртаулдс ) и двух типов смол. Показано, что обработанные волокна, имеющие более хорошую адгезию, обладают худшей способностью поглощать энергию удара.  [c.323]

Сравнение рис. 12, а и 12, б показывает, как важны механические свойства матрицы для того, каким будет вид роста трещины и усталостная прочность композита. Матрица из высокопрочного алюминиевого сплава 6061-МТ6 ) фактически не давала трещинам разветвляться, что привело к сокращению усталостной долговечности по величине почти на порядок. Этот результат можно качественно объяснить, используя понятие относительных упругих модулей компонентов, и для того, чтобы учесть пластическое поведение, мы рассматриваем эффективные модули. Так, алюминий 1235 течет при низком уровне напряжений, отношение эффективных модулей волокна и матрицы увеличивается, что способствует ветвлению трещин. Пластическое течение в матрице с низким пределом текучести также затупляет конец трепцнны и сводит к минимуму напряжения около него. С другой стороны, напряжения у конца трещины в алюминиевом сплаве 6061-МТ6 высоки, отношение эффективных модулей более низкое и ветвление трещин минимально. Более того, вязкие волокна являются особенно чувствительными к высоким напряжениям вблизи конца трепщны, и поэтому рост усталостных трещин будет быстрым.  [c.420]

При комнатной температуре у однонаправленных композитов алюминия 2024, армированного волокнами бора с объемным со-держанием 40% (диаметром 0,01 см), наличие водяного пара увеличивало скорость роста усталостных трещин и сокращало усталостную долговечность [49]. В ходе испытаний на знакопеременный изгиб композитные образцы колебались с постоянной амплитудой деформации и частотой, равной резонансной. Была получена тарировочная зависимость этой частоты от длины усталостной трещины, а затем изменения частоты были использованы для определения скоростей роста трещин. Испытывалось два типа образцов один с волокнами, ориентированными вдоль, а другой с волокнами, ориентированными поперек оси образца. Для поперечной ориентации волокон чувствительность к водяному пару была наибольшей, в этом случае после введения паров воды в испытательную камеру скорость роста трещины увеличилась в 200 раз (рис. 20). Для алюминиевых сплавов было найдено, что усталостная долговечность изменяется под действием паров воды не более чем в 10 раз [49].  [c.431]

Роллинс [42] впоследствии подтвердил, что усталостное поведение композитов с волокном бора (на примере композита алюминия 6061 с бором) чувствительно к наличию паров воды, и, кроме того, отождествил эту чувствительность со склонностью волокон бора диаметром 0,010 см к продольному расщеплению. Поведение, подобное тому, которое показано на рис. 20, наблюдалось в случае сухой и влажной сред гелия. Введение паров воды в испытательную камеру не оказало никакого заметного эффекта для образцов, которые были армированы волокнами бора диаметром 0,014 см, что согласуется с наблюдающимся предрасположением к продольному расщеплению волокон меньшего, но не большого диаметра [32]. Модуль разрушения волокон бора обоих диаметров не зависел от характера атмосферы это под-  [c.432]


Смотреть страницы где упоминается термин Чувствительность композита : [c.411]    [c.580]    [c.86]    [c.333]    [c.52]    [c.60]    [c.83]    [c.210]    [c.285]    [c.199]    [c.349]    [c.402]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.0 ]



ПОИСК



334 — Чувствительность

Композит



© 2025 Mash-xxl.info Реклама на сайте