Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двойниковые кристаллы

Для образования двойникового кристалла указанную операцию сдвига слоя А относительно слоя F необходимо проделать для каждой последующей за А плоскостью (112) слой за слоем так, чтобы это приводило каждый раз к конфигурации (79) по схеме  [c.136]

Структура отожжённой меди и её сплавов характеризуется наличием значительных количеств двойниковых кристаллов, что наблюдается в сплавах с кристаллической решёткой гранецентрированного куба.  [c.555]

Микроструктура отожженной меди приведена на фиг. 231. Структура состоит из равноосных зерен меди с наличием двойниковых кристаллов.  [c.248]


У многофазных сплавов отдельные фазы имеют различные кри-у сталлические решетки. Однако если две различные фазы имеют плоскости с близкими межатомными расстояниями (эти плоскости могут иметь различные кристаллографические индексы в каждой фазе) и расстановка атомов на их границах подобна или тождественна, то возникает их совершенное соединение. Такие границы (и фазы, разделенные ими) называются когерентными и имеют малую энергию. Часто такая ориентация создается между выпавшей фазой и основным твердым раствором. Когерентными являются, например, и границы двойниковых кристаллов в том случае, если они совпадают с плоскостью двойникования.  [c.43]

Известным примером такого рода дефектов является тонкая двойниковая прослойка в кристалле.  [c.154]

КРИСТАЛЛОГРАФИЯ ДВОЙНИКОВАНИЯ. Плоскости двойникования в отличие от обычных границ являются когерентными, так как в плоскости двойникования атомы занимают позиции, общие для двойниковой области и матричного кристалла (см. рис. 77,а). Рентгеновское и иное излучение, рассеянное атомами общих частей кристалла, закономерно отличается по фазе, т. е. когерентно.  [c.132]

Для пластической деформации скольжением и двойникованием общим являются их дислокационный механизм и однородность деформации. Геометрия и дислокационная модель скольжения объясняют поворот осей кристалла в процессе деформации. Теория пересечения двойника скользящей дислокацией — перегибы на двойниковой границе и ее искажение, при этом общим здесь является однородность деформации по всему кристаллу во время скольжения или в двойниковой прослойке при двойниковании. Однако в деформированных кристаллах распределение дислокаций неравномерное, а возникающие дислокационные сетки и субграницы при избытке дислокаций одного знака приводят к микроскопической неоднородности, создавая локальную разориентировку, достигающую нескольких градусов. При простейших видах деформации (растяжение, сжатие) возникают значительные разориентировки. Для неоднородных и неравномерных полей напряжений и деформаций в макромасштабе (прокатка, кручение, изгиб, прессование и т. п.) появление существенной разориентировки неизбежно.  [c.148]

Двойникование часто встречается в металлах с гексагональной и гранецентрированной кубической решеткой. Области сдвигов при двойниковании включают множество атомных слоев. По сравнению с исходным состоянием (ДО пластической деформации, рис. 55, а) атомы в каждом слое при двойниковании сдвигаются на одно и то же расстояние относительно слоя, лежащего под ним (рис. 55, б). В результате двойникования возникают двойниковые полосы, внутри которых расположение атомов является зеркальным отражением структуры решетки соседних частей кристалла. Если при скольжении металлы упрочняются (наклепываются), то при двойниковании они обычно разупрочняются.  [c.77]


Двойниковые границы. Существуют особые виды границ между кристаллами, когда атомы на поверхности раздела образуют узлы решеток обоих кристаллов. Два таких кристалла на границе сопрягаются своими плоскостями и, как говорят, когерентны друг с другом. Распространенным проявлением общей когерентной границы двух кристаллов является двойниковая или зеркальная сопряженность.  [c.20]

Другая возможность может встретиться в ГЦК кристаллах с ошибкой наложения типа 1231213213 2. .. Здесь в шестом слое меняется порядок чередования слоев кубического типа 1 2 3 1 2 3 на обратный порядок тоже кубического типа 1 3 2 1 3 2. В результате возникает так называемый двойниковый кристалл или двойник в ГЦК решетке. Двойпикованпе встречается и в кристаллах с другими кристалличеоккми решетками.  [c.27]

Вт/см при длительности импульса 10 —10 с. Такое значение длительности импульса заметно сказывается на процессах, происходящих в материале под воздействием излучения. В условиях воздействия лазерными импульсами миллисекундной длительности в материалах происходят структурные изменения, вызванные большими скоростями нагрева и охлаждения. Исследованиями установлены существенные отличия структур, образовавшихся при облучении стали 20 импульсными ОКГ длительностью 10 с и энергией 1—35 Дж, от структур, полученных в этой же стали при воздействии излучения миллисекундной длительности [41]. Зона воздействия гигантского импульса на сталь 20 состояла из трех слоев первый слой (толщина 10—20 мкм) — участок со структурой мелкоигольчатого мартенсита и микротвердостью 760 кгс/мм второй (толщина ss20 мкм) — ЗТВ, для структуры которой характерны превращенные зерна перлита с микротвердостью 650 кгс/мм третий (толщина 700—750 мкм) — зона механического влияния (ЗМВ), для структуры которой характерен феррит, причем ферритные зерна в этой зоне содержат двойниковые кристаллы. Микротвердость этой зоны составляет 230 кгс/мм .  [c.23]

Тонкая структура реечного мартенсита сложна и представляет собой запутанные дислокации высокой плотности ( 10 см" ) при отсутствии двойниковых кристаллов. В легированных сталях нередко внутри мартенситых пакетов между кристаллами мартенсита сохраняются прослойки остаточного аустенита (см.  [c.174]

Двойниковые кристаллы 230 Двойной эвтектики, поверхности 136 Дебая—Шеррера камеры, высокотемпературные 276 Дебая — Шеррера метод 251 Диаграммы равновесия 7  [c.393]

Поверхностная энергия на границе раздела двух соприкасающихся кристаллов зависит от ориентировки этих кристаллов. С увеличением угла разориентировки возрастает величина избыточной поверхностной энергии. Поверхность раздела двойников имеет малую а. Этим объясняется, что двойниковые кристаллы плохо растут. Аналогично ведет себя видманштеттова структура. Однако если с помощью холодной деформации несколько изменить взаимную ориентировку кристаллов, то их рост идет быстрее. При наличии когерентной связи имеет значение еще и величина упругой энергии на границе фаз. Чем она меньше, тем стабильнее структура, ПО этой причине когерентная фаза выделения в жароирочных никелевых сплавах слабо коагулирует. При введении в силав определенных легирующих элементов можно уменьшить разницу в параметрах решеток обеих фаз. Это уменьшает упругую деформацию и приводит к дополнительному замедлению скорости коагуляции.  [c.175]

На фиг. 237 показана структура той же бронзы, что и на фиг. 236 но после ковки и отжига при 720°. Структура состоит из однородных зерен твердого раствора а и двойниковых кристаллов. Такая структура неантифрикционна.  [c.251]

Расслоения и расколы в графитовом кристалле возможны также и по базисным плоскостям. В связи с этим, кроме упомянутого выше двойникования по плоскости (1121) или (4483), у натуральных графитов наблюдаются двойники типа срастания, ось которого параллельна оси с графитовой решетки, а угол двойникования составляет около 30°. Факт существования двойниковых кристаллов графита подтвержден в [5-15, 5-16] совпадением углов между рефлексами на монохроматических лауэграммах и электронно-микроскопических снимках графитового монокристалла.  [c.104]

Вероятность воздействия на границы зерен, особенно в растворах кислот, зависит как от кристаллографических факторов, так и от чистоты металла. Лакомб и Яннаки показали, что в результате действия 10%-ной соляной кислоты на очень чистый алюминий коррозии подвергаются те границы соседних зерен, между направлениями которых имеется большая разница. Вопрос сложный, и будет ли разъедаться отдельная граница или нет — зависит от угла наклона плоскости границы по отношению к рядам плотно упакованных атомов, а также от относительной ориентировки этих рядов в двух кристаллах таким образом, иногда одна часть границы пострадает, в то время как другая часть той же границы останется незатронутой на одном образце прямая часть границы, разделяющая два двойниковых кристалла, оставалась неизмененной, а искривленная часть разъедалась так как атомные ряды в двойниковых находятся в положениях зеркального отражения, то разрыв структуры, благоприятный для разъедания при прямой границе, будет отсутствовать [34].  [c.349]


Величина сдвига s и величина сдвиговой деформации в плоскости сдвига 5 — важные критерии двойникового превращения. В процессе двойникового превращения изменяется ориентировка двойниковой прослойки, однако не изменяется симметрия или структура кристалла. Поэтому угол ф между первой К и второй К2 неискаженными плоскостями остается неизменным до и после превращения, а величина сдвига s будет пропорциональна расстоянию от плоскости зеркального отражения. В частности, для о. ц. к. кристалла (см. рис. 77, а) s= (паКз)/6, где п — О, 1, 3... — номер рассматриваемой плоскости (112), отсчитываемый от плоскости зеркального отражения п= О [на рис. 77, а показаны лишь атомы каждой второй такой плоскости ряды атомов А, С, Е, А м т. д., а ряды атомов В, D, F, В, не лежащие в плоскости чертежа (см. также рис. 42), не обозначены].  [c.134]

Реакция (84) энергетически не выгодна и возможна только при концентрации напряжений на двойниковом некогерентном фронте, что и имеет место в действительности. Реакция (84) дает набор испущенных дислокаций из некогерентных границ двойника с нулевым даль-нодействующим полем напряжений. Происходит увеличение длины двойниковой прослойки за счет эмиссии дислокаций из некогерентной границы. Деформация сдвига, произведенная испущенными дислокациями, эквивалентна деформации от исходной двойниковой границы, из которой они испущены. Существование эмиссионных дислокаций для о. ц. к. и г. п. у. кристаллов подтверждено экспериментами просвечивающей электронной микроскопии, наблюдаемым пробегом субграниц впереди двойника.  [c.145]

Относительное удлинение ед при полном двойникова-нии монокристалла определяется выражением (85). Для двойникования по плоскости 112 в о. ц. к. кристалле максимальная величина едтах=41,4% достигается при а=Р=54,7°. Однако в двойниковую ориентацию переходит только часть всего объема /дС 1, поэтому  [c.244]

Механизм наблюдаемого хемомеханического эффекта, исходя из теоретических и экспериментальных данных, можно представить следующим образом. Первоначальный пластический накол обусловил образование зародышей двойников сдвига, которые затем росли вследствие перемещения двойникующих дислокаций. связанного с химическим растворением поверхности кристалла, понижающим поверхностный потенциальный барьер и облегчающим движение этих дислокаций (хемомеханический эффект для двойникового сдвига). Полные дислокации, юзникавшие в матрице при деформировании, взаимодействовали с двойниковыми (в частности, препятствовали росту двойника, вызывая большие локальные напряжения), но, испытывая з>начительно большее сопротивление движению  [c.127]

Деформированный кристалл содержит несколько параллельных двойниковых слоев. Иногда образование двойников механической деформацией сопровождается резкими шумами, указывающими на иммульсивность процесса.  [c.250]

Показатели преломления являются осн. оптич. константами кристаллов и часто служат их диагностич. признаком. О методах измерения п см. в ст. Рефрактометрия, Рефрактометр, Ыммерсиоимый метод. Особую роль в К. играют исследования кристаллов в поляризац. микроскопе с помощью универсального вращающегося столика Фёдорова, к-рый позволяет наблюдать кристаллич. препарат в любом направлении и вращать его вокруг любой проходяш ей через него оси. Разработанная Фёдоровым методика позволяет, наблюдая погасания кристаллов при поворотах, определять ориентацию осей индикатрисы кристал.тгов относительно его граней, плоскостей спайности, двойниковых плоскостей, находить законы двойникования, из.мерять углы оптических осей, показатели преломления кристаллов (определяя смещение изображения при наклоннол прохождении света через кристаллич. пластинку известной толщины).  [c.513]

Стремление к минимуму упругой энергии определяет внутр. структуру и взаимное расположение мартенситных кристаллов. Новая фаза образуется в форме тонких пластинок, определ. образом ориентированных относительно кристаллография, осей. Пластины, как правило, не являются монокристаллами, а представляют собой пакеты плоскопараллельных доменов — областей новой фазы, различающихся ориентацией кристаллич, решётки (между собой домены находятся в двойниковом отношении см. Доме/ш упругие, Деойникование), Интерференция полей напряжений от разл. доменов приводит к их частичному уничтожению. Дальнейшее уменьшение упругих полей достигается за счёт формирования ансамблей из закономерно расположенных пластин. Т. о. в результате М. п. возникает поли-кристаллич. фаза со своеобразным иерархия, порядком (ансамбли — пластины — домены) в расположении структурных составляющих (см. Гетерофазная структура). Деформирование материала с такой структурой происходит в осн. за счёт смещения доменных границ ( сверхупругость ). При нагреве дроисходит обратное превращение мартенситной фазы в исходную, и тело восстанавливает нервонач. форму, к-рую оно имело до М. п. (память формы).  [c.49]

Влияние дефектов кристаллического строения на пластичность. П. к. полностью определяется дефектами строения кристалллгч. решётки. Подвижные дефекты являются носителями элементарных актов пластич. деформации. Направленное перемещение по кристаллу вакансий, межузельных атомов, краудионов, днслока-ций, двойниковых и межфазных границ вызывает в нём массоперенос, необратимое изменение размеров и фор-  [c.634]

Мартенситное превращение с инвариантной решеткой в сплавах с /3-фазой, как указано, связано с дефектами упаковки или двойниковыми дефектами. В первом случае разновидности кристаллов мартенсита с характеристической плоскостью габитуса образуют монодоменные области мартенсита, решетка которого связана с решеткой исходной фазы ориентационным соотношением. Во втором случае каждый кристалл мартенсита с характеристической плоскостью габитуса состоит из двух мартенситных доменов с взаимно двойниковым соотношением ориентировок. Каждый домен имеет кристаллографически эквивалентное ориентационное соотношение решетки с решеткой исходной фазы.  [c.33]

Таким образом, механизмы деформации при мартенситном превращении ниже некоторой температуры различаются в зависимости от того, связана ли деформация с инвариантной решеткой с двойниковыми дефектами ипи с дефектами упаковки. Действительно, в сплавах Си—А1—N1 с 71-мартенситом типа 2Н внутренние дефекты явпяются двойниковыми дефектами. Известно, что деформация в этих сплавах развивается посредством двойникования. Однако в сплавах Си—2п—А1 с /32 Мартенситом типа 9/ внутренние дефекты явпяются дефектами упаковки. Известно, что деформация в этих сплавах развивается посредством перемещения поверхности раздела между кристаллами мартенсита. В настоящее время установлено, что и перемещение границы раздела между кристаллами мартенсита разных кристаллографических вариантов осуществляется двойникованием в этом мартенсите.  [c.34]


Как описано ранее, под действием напряжений, приложенных к образцу, состоящему из кристаллов мартенсита 24 вариантов ориентировок с характеристической плоскостью габитуса, происходит поглощение одних двойниковых доменов другими, т.е. развивается деформация двойникованием. Образец деформируется до тех пор, пока не возникает двойниковый монодомен, соответствующий наибольшей степени деформации. Если в процессе деформирования приостановить нагружение, то, естественно, образец оказывается состоящим из большого числа двойниковых доменов. Если нагреть такой образец выше А , то в соответствии с ориентационным соотношением решеток каждого из таких двойниковых доменов и исходной фазы возникает исходная фаза с точно такой ориентировкой, какая была до деформации. В результате этого форма образца полностью восстанавливается до той, которая была перед деформацией.  [c.36]

Следует указать, что существует определенная неясность относительно двойниковых дефактов, которые можно видеть на рис. 1.34, в, л,/и. Как указано ранее, двойниковые дефекты в кристаллах мартенсита появляются неизбежно, если плоскость габитуса является инвариантной плоскостью. Однако деформация решетки при превращении в этом случае является сдвиговой деформацией в общей базисной плоскости кристаллов до и после превращения. Поэтому если плоскость габитуса  [c.55]

Типичным примером, характеризующим деформационное поведение монокристаллов, являются результаты исследования сплава Си — А1 — N1. На рис. 2.50 показаны [44] кривые напряжение — деформация, полученные при растяжении монокристаллических образцов сплава [% (по массе)] Си — 14,5 А1 - 4,4 N1 в широком интервале температур, включающем Г превращения. При Т < перед деформацией существует термически равновесная мартенситная 7-фаза. Миграция поверхности раздела мартенситной и исходной фаз или двойниковой границы внутри мартенситных кристаллов обусловливает механизм деформации при низких напряжениях. Позтому на кривых не наблюдается области упругой деформации и легко происходит пластическая деформация. В интервале наблюдается область упругой деформации исходной фазы до того, как под действием напряжений образуется мартенситная 71 -фаза. В тот момент, когда напряжения вызывают образование мартенсита, происходит значительное падение пряжений. Это явление связано с механизмом образования мартенситной у -фазы. Она образуется мгновенно в большом объеме, при зтом высвобождается большая знергия деформации и происходит значительная релаксация напряжений. При Т <. при снятии нагрузки деформация сохраняется частично или полностью, однако затем при нагреве происходит полный возврат деформации. В связи с зтим восстанавливается форма, то есть сплавы проявляют аффект памяти формы. При Т> А мартенситная 0 1-фаза образуется под действием напряжений, поэтому при зтих температурах (рис. 2.50) большого падения напряжений не происходит, однако вблизи точки  [c.107]

На рис. 2.51 показаны кривые напряжение — деформация, иллюстрирующие деформационное поведение поликристаллических образцов сплава Си — А1 — N1 [45]. Хотя в температурной области ниже точки поликристаллических образцов и наблюдается упругая деформация в мартенситном состоянии (см. рис. 2.51, а), но миграция поверхностей раздела между мартенситными фазами или двойниковых границ внутри кристаллов мартенсита происходит с большим трудом, чем в монокрис-таллических образцах. Можно считать, что причиной этого является [39, 40] взаимное стеснение кристаллических зерен. В температурной области выше точки напряжение образования мартенсита, как и в  [c.108]

Мартенситное превращение сопровождается изменением формы превращенной области, что проявляется в образовании рельефа на плоской поверхности образца. Движение межфазной поверхности при мартенситном превращении по своему характеру близко к распространению двойниковых границ. В обоих случаях перестройка решетки осуществляется перемещением частичных дислокаций (трансформационных или двойникующих) вдоль межфазной поверхности. Вследствие этого скорость роста мартенситных кристаллов велика и мало чувствительна к изменению температуры. Со сдвиговым характером перестройки решетки связано и образование многочисленных дефектов кристаллической решетки Б мартенситной и исходной фазах. Дефекты являются следствием пластической релаксации упругих напряжений, возникающих в связи с изменением формы превращающейся области. Мартенситные превращения называют также превращениями с изменением формы [1191.  [c.31]


Смотреть страницы где упоминается термин Двойниковые кристаллы : [c.298]    [c.507]    [c.18]    [c.298]    [c.104]    [c.135]    [c.138]    [c.151]    [c.128]    [c.129]    [c.17]    [c.250]    [c.559]    [c.559]    [c.369]    [c.34]    [c.34]    [c.72]    [c.117]   
Диаграммы равновесия металлических систем (1956) -- [ c.230 ]



ПОИСК



Двойниковые



© 2025 Mash-xxl.info Реклама на сайте