Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы для криогенной техник

Аустенитные стали с г. ц. к. структурой. АустенИтнЫе жаропрочные сплавы и нержавеющие стали, обладающие высокой вязкостью разрушения, несмотря на большую, чем у ферритных сталей, стоимость, являются важнейшими материалами для криогенной техники. Однако ряд сплавов  [c.42]

В течение многих лет при изготовлении емкостей для жидких газов используют никелевые стали. Интерес к этим материалам повысился вновь в связи с их применением в газгольдерах и баках для ожиженного природного газа. Это потребовало разработки сталей, не только имеюш их повышенные свойства в деталях больших сечений (такие детали ранее не находили широкого применения), но и обладающих в сварных соединениях массивных деталей такими же характеристиками, как и основной материал. В таких случаях используют также и аустенитные стали. Однако вследствие более низкого предела текучести и боль-и ей стоимости они находят ограниченное применение в специальных конструкциях, где требуется минимальная толщина стенки. Вследствие небольшого удельного веса и высокой коррозионной стойкости алюминиевые сплавы привлекают внимание специалистов как материалы для криогенной техники.  [c.46]


МАТЕРИАЛЫ ДЛЯ КРИОГЕННОЙ ТЕХНИКИ,  [c.498]

Материалы для криогенной техники  [c.503]

Твердые сплавы 144—146 Материалы для криогенной техники 498—510  [c.684]

Аустенитные хромоникелевые стали. Благодаря сохранению высокой пластичности и вязкости (вплоть до -269 °С), коррозионной стойкости и хорошим технологическим свойствам эти стали являются основным конструкционным материалом для криогенной техники.  [c.128]

Основными критериями при выборе конструкционных материалов, работающих в условиях низких температур, являются удельная прочность и сопротивление хрупкому разрушению. С этой точки зрения одним из перспективных материалов для криогенной техники являются алюминиевые сплавы. При любом уровне прочности удельная прочность титановых сплавов в 1,7, а алюминиевых — в 2,8 раза больше, чем у стали. Опыт показывает, что в алюминии и его сплавах не существует резкого перехода из вязкого в хрупкое состояние при низких температурах (порога хладноломкости), а пределы текучести и прочности при низких температурах выше, чем при комнатной. У большинства алюминиевых сплавов пластичность повышается с понижением температуры или остается на уровне значений при комнатной температуре. Благодаря этому алюминиевые сплавы широко используются в производстве, хранении и транспортировке криогенных жидкостей, а также в конструкциях космических снарядов и ракет, работающих на криогенных топливе и окислителе, в качестве материалов для баков.  [c.424]

Как уже отмечалось, хромоникелевые нержавеющие стали являются хорошим конструкционным материалом для криогенной техники. Чем ниже рабочая температура, чем стабильнее требуется структура, тем с большим содержанием никеля выбирают стали и сплавы.  [c.382]

Свойства некоторых конструкционных материалов для криогенной техники  [c.59]

Аустенитные нержавеющие стали являются основным конструкционным материалом для широкого использования при низких температурах в электродвигателях, электрогенераторах и в крупных электромагнитах со сверхпроводящими обмотками, применяемых в процессах плавки, и в магнитогидродинамических силовых установках. Применение этих материалов в криогенной технике обычно невозможно без сварных узлов и деталей, которые охлаждаются в процессе эксплуатации до 4 К. Для расчета и создания безопасно повреждаемой конструкции необходимо знать соответствующие характеристики основного и сварного металла в условиях изготовления и эксплуатации де-  [c.235]


Титаи и его сплавы. Для криогенной техники тнтан и его сплавы относительно новые материалы, однако их применение с каждым годом расширяется. Титан и его сплавы, обладая достаточно высокой прочностью при 20 " С (на уровне аустенитных и других сталей), имеют удовлетворительную пластичность и ударную вязкость при криогенных температурах.  [c.507]

Весьма актуальными также являются проблемы криогенной техники, связанные с созданием сверхпроводящих материалов и использованием различного криогенного оборудования резервуаров для хранения сжиженных газов и других емкостей, миниатюрных холодильных газовых машин, криогенных насосов, рабочие поверхности которых, охлаждаемые хладагентами (жидкие азот, водород, гелий), позволяют вымораживать практически все газы из откачиваемого объема и получать вакуум выше 10 мм рт. ст. Важны также низкотемпературные исследования материалов, используемых в ракетно-космических системах, элементы которых, подвергающиеся во время службы действию статических и динамических нагрузок, вибраций, изгибных колебаний и т. д., работают в весьма широком диапазоне температур, начиная с очень низких и включая температуры, близкие к температуре плавления материала.  [c.187]

Материалы настоящего сборника, в частности, содержа-щие данные о характеристиках вязкости разрушения и механических свойствах конструкционных материалов в условиях глубокого охлаждения (при температурах ниже 77 К), представляют интерес для конструкторов, специа-листов-материаловедов, работающих в области создания новых конструкций криогенной техники и разработки новых материалов криогенного назначения, и инженеров смежных специальностей, занятых в производстве криогенного и другого оборудования, используемого при низких температурах.  [c.9]

Методы испытания на основе механики разрушения использованы для оценки вязкости разрушения и скорости роста трещины усталости материалов для сосудов под давлением в космической технике, емкостей для жидкого природного газа и материалов для сверхпроводящих электрических машин. Имеется несколько обзоров по вязкости разрушения при низких температурах в работе [49] приведены данные по Ki материалов авиакосмической техники в интервале температур 20—300 К, в обзоре [50] — характеристики высокопрочных сплавов, в работе [51] — свойства криогенных никелевых сталей. Данные по скорости роста трещины усталости при 4 К содержатся в обзоре [52]. Скорость роста трещины различных материалов при охлаждении уменьшается, за исключением сталей при температурах ниже температуры хладноломкости. Свойства  [c.24]

Вязкость разрушения. Для критерия вязкости разрушения / i , принятого в линейной упругой механике разрушения с присущими ей ограничениями размерных соотношений образцов для испытаний в условиях плоской деформации, не могут быть получены корректные значения на вязких аустенитных материалах, если не использовать для испытаний образцы очень больших толщин. Однако такие толщины не характерны для поперечных сечений полуфабрикатов, используемых в реальных конструкциях криогенной техники. Кроме того правильный расчет таких конструкций или деталей в случае разрушения должен предусматривать пластическое их разрушение (в упругопластической области), а не катастрофическое (линейное упругое разрушение). Поэтому все характеристики разрушения были получены с помощью критерия  [c.336]

Воздействию низких температур подвергаются очень многие материалы и изделия, например трубы для газо- и нефтепродуктов, мосты, железные дороги, автомобили, летательные аппараты и т. д. В северных районах охлаждение материалов может достигать -60 °С, корпуса самолетов и космических аппаратов могут охлаждаться до температуры жидкого кислорода (-183 С). Детали и отдельные узлы холодильной и криогенной техники, которые используются для получения, хранения, транспортировки сжиженных газов, охлаждаются до температуры жидкого гелия (-269 °С). При низких температурах у металлов наблюдаются потеря пластичности и вязкости и повышенная склонность к хрупкому разрушению. Основное требование к материалам, работающим в условиях низких температур, — это отсутствие хладноломкости.  [c.142]


Широкое использование сжиженных газов и в связи с развитием массовых перевозок газов морем резко возросла необходимость в создании экономичных хладостойких материалов для нужд криогенной техники. В промышленно развитых странах (США, Япония, Норвегия, Франция), являющихся крупнейшими потребителями сжиженных природных и нефтяных газов, развернуто строительство судов для перевозки сжиженных газов при температуре до — 162°С. При этом вынуждены использовать стали с высоким содержанием никеля (типа 0Н9 или 0Н6 и даже сплавов Инвар-ЗбН).  [c.12]

Работоспособность многих деталей, конструктивных элементов и приборов зачастую зависит не столько от механических, сколько от физических свойств применяемых материалов. Так, долговечность режущего инструмента тем выше, чем меньше тепло- и температуропроводность инструментальной стали. В случае низкой теплопроводности разогрев режущей кромки инструмента меньше, а теплоотвод осуществляется больше стружкой, чем инструментом. Низкие значения теплопроводности необходимы для сталей криогенной техники, когда приток тепла по металлу в охлаждающую среду снижает энергетические показатели охлаждающих устройств. Наконец, повышенные значения теплопроводности сталей и других сплавов необходимы для создания качественных теплообменников.  [c.126]

В зависимости от химического состава и структуры коррозионностойкие стали и сплавы могут обладать и другими полезными для практики свойствами. Так, стали, содержащие 12% Сг и более, а также некоторые другие легирующие элементы (кремний, алюминий и др.) отличаются повышенной жаростойкостью, т. е. сопротивлением образованию окалины, или и повышенной жаропрочностью (главным образом, аустенитные стали и сплавы). Кроме того, аустенитные стали, у которых ударная вязкость мало снижается вплоть до очень низких температур, можно использовать в криогенной технике, а также в качестве немагнитных коррозионностойких материалов.  [c.7]

Титановые а-сплавы — самые перспективные конструкционные материалы для использования в криогенной технике. При температуре 20 К лучшие свойства имеют однофазные а-сплавы АТ2-2 и АТ2-3 [12, 26].  [c.38]

Как показывает расчет, применение холодильной изоляции с внутренними теплоотводами при постоянном коэффициенте теплопроводности энергетически целесообразно при температуре кипения азота и прк более низких температурах. При поддержании в холодильных камерах умеренно низких температур (даже около —100°С) рассматриваемая система не дает заметной экономии энергии. Однако коэффициент теплопроводности реальной изоляции существенно зависит от температуры. Анализ данных о температурной зависимости коэффициента теплопроводности различных изоляционных материалов. применяемых в криогенной технике, показывает, что функцию Я (Г) для приближенных расчетов можно представить как  [c.59]

Существенным стимулом для развития криогенной техники явилось осуществление в последние годы космических и ядерных программ в СССР и США. Криогеника имеет огромные перспективы в различных хозяйственных и научных отраслях. Важнейшим фактором дальнейшего развития техники низких температур является создание материалов, пригодных для работы в этих условиях.  [c.259]

Хромоникелевые аустенитные стали благодаря сохранению высокой пластичности и вязкости вплоть до температур, близких к абсолютному нулю, высокой коррозионной стойкости и хорошим технологическим свойствам являются основным материалом для многих областей холодильной и криогенной техники.  [c.266]

Сплавы со структурой а-фазы типа ВТ5-1, АТ2, легированные А1, 5п, 2г, хорошо свариваются, сохраняют высокую пластичность при низких температурах и поэтому являются наиболее перспективными конструкционными материалами для использования в холодильной и криогенной технике. Сплавы с двухфазной а + (3-структурой типа ВТЗ-1 имеют более высокую прочность, но несколько меньшую пластичность и их реже используют при криогенных температурах.  [c.273]

Низкое содержание никеля приводит к образованию аустенита, не устойчивого при низких температурах, и мар-тенситное превращение, вызывающее большие напряжения, может отрицательно сказаться на характеристиках разрушения. Проведенная Национальным Бюро Стандартов оценка характеристики разрушения основного материала и сварных стыковых соединений стали Fe—13Сг—19Мп является частью совместной советско-американской программы исследований материалов для криогенной техники. В данной работе приведены результаты испытаний вязкости разрушения и скорости роста трещины усталости (СРТУ).  [c.220]

В этой главе дан краткий обзор применения композиционных материалов. Достижения многих конструкторов и фпрм-изгото-вителей свидетельствуют о возможности расширения пронавод-ства и применения композиционных материалов и в других отраслях промышленности, обсуждаемых в других главах. Ниже перечислены изделия, для которых использование уникальных свойств современных волокон может стать экономически выгодным лыжи, шесты для прыжков, весла гоночных каноэ, оптические приборы, контейнеры ядерных реакторов, промышленные центрифуги, зубчатые передачи, приводные ремни и изделия для криогенной техники.  [c.489]

Весьма перспективными для криогенной техники являются композиционные материалы. Их отношение предела прочности к теплопроводности на несколько порядков выше, чем у материалов других классов. Результаты работ, проведенных по программам ВВС и НАСА, содержатся в обзорах [12—14]. Настоящая программа предусматривает определение упругих констант, термического расширения и теплопроводности композиционных материалов пяти классов стеклопластиков, материалов на эпоксидной основе с синтетическим волокном, бороиластиков, угле- и боралю-миния. В табл. 3 сопоставлены повышенные значения ряда расчетных параметров этих материалов (теплопроводность/модуль Юнга теплопроводность/иредел текучести предел текучести/плотность и модуль Юнга/плотность) со свойствами некоторых конструкционных сплавов. Все дан-  [c.35]


Сварные соединения из нержавеющих безуглероди-стых мартенситно-стареющих сталей, не подвергнутые закалке после сварки, при испытаниях в условиях криогенных температур ра3(рушаются всегда по основному материалу. Для обеспечения высокой надежности в эксплуатации безуглеродистые нержавеющие стали для криогенной техники не следует подвергать старению.  [c.165]

Весьма заманчивой возможностью для решения проблемы радиационной безопасности при космических полетах является создание так называемой активной защиты, использующей для отклонения заряженных частиц магнитные и электрические поля [30]. Вес такой защиты, как показывают оценки, в ряде случаев может быть сравнимым или меньще веса пассивной защиты. Важно также, что по мере совершенствования конструкционных и сверхпроводящих материалов, криогенной техники и техники сверхвысоких напряжений вес активной защиты будет снижаться [30].  [c.292]

Современная техника позволяет получать любые низкие температуры. Вся область низких температур условно делится на три диапазона умеренно низкие (273- 120 К), криогенные (120-0,5 К) и сверхнизкие (0,5->0 К). Чем ниже температура, тем больщие затраты энергии и материалов для получения холода, тем  [c.310]

В связи с интенсивным развитием криогенной техники актуальными являются испытания усталостной прочности конструкционных материалов при высокочастотном циклическом нагружении в условиях низких те.мператур. В Институте проблем прочности АН УССР создана магнитострикционная установка резонансного типа, предназначенная для изучения выносливости материалов при симметричных циклах растяжения-сжатия и изгиба в одной плоскости с частотой около 3 кГц [46].  [c.248]

В настоящей работе описаны результаты исследования нескольких типов сварных соединений сплава на основе никеля марки In onel Х750— одного из основных перспективных материалов для использования в криогенной технике. Исследованы сварные соединения сплава, выполненные дуговой сваркой вольфрамовым электродом в среде защитного газа (ДЭС) и электронно-лучевой сваркой (ЭЛС) в трех состояниях термообработки 1) закалка перед сваркой 2) закалка и двухступенчатое старение перед сваркой 3) закалка и двухступенчатое старение после сварки. Проведены радиографический контроль сварных соединений, металлографический и фрактографический анализы. Механические свойства при растяжении и характеристики разрушения определены на поперечных сварных образцах в интервале от комнатной температуры до 4,2 К.  [c.311]

Сплав А453 обычно применяют при повышенных температурах, так как он имеет превосходные прочность, сопротивление ползучести и окислению в этих условиях. Сплав используют для деталей крепежа, дисков и лопаток турбин, деталей форсажных камер реактивных двигателей. Он был применен в качестве криогенного материала в космической технике. Многие металлы с г. ц. к. решеткой являются прекрасными материалами для использования их при низких температурах, а сплав А453 содержит достаточно никеля для стабилизации аустенита при таких температурах. Поэтому его рассматривают в качестве конструкционного материала для ракет с ядерными силовыми установками, где необходимы исключительно высокие характеристики как при низких, так и при повышенных температурах. Сплав считается перспективным материалом для его применения при температуре 4К. Аустенитные нержавеющие стали серии 300 уже используют в прототипах сверхпроводящего оборудования сплавом А453 предполагают заменять их в  [c.321]

Многае коррозионностойкие стали и сплавы имеют также и другие важные для практического использования свойства. Например, стали, содержащие > 12 % Сг, а также Si и А1, обладают повышенной жаропрочностью (в основном стали и сплавы аустенитного класса). Ударная вязкость аустенитных сталей незначительно уменьшается вплоть до низких температур, поэтому их широко используют в криогенной технике. Стали этого класса являются парамагнитными, вследствие чего применяются в качестве коррозионностойких немагнитных материалов.  [c.4]

Сочетание высоких механических свойств (в том числе и при криогенных температурах) с отличной свариваемостью делает сталь 08Х15Н5Д2Т перспективным материалом для многих отраслей современной техники.  [c.40]

Сплав 1201 сваривают аргонодуго-вьтм, гелиево-дуговым, электронно-лучевым, шовным и точечныл способами. Медь и ее сплавы являются материалами, которые одними из первых стали применяться в криогенной технике. Для меди характерна высокая пластичность и вязкость до температур, близких к абсолютному нулю при испытаниях в области криогенных температур медь не показывает даже признаков хрупкого разрушения чистая медь имеет высокую теплопроводность и коррозионную стойкость в атмосферных условиях и многих агрессивных средах.  [c.506]

Благодаря хорошим свойствам стеклопластиков при низких температурах они находят широкое применение в Советском Союзе в криогенной технике, например в производстве контейнеров для жидких газов. Люиков с сотр. [26] исследовали теплофизические свойства композиционных материалов на основе стеклянных волокон и фенолоформальдегидпой смолы. В качестве объекта исследования были выбраны однонаправленные стекловолокниты на основе фенолоформальдегидной смолы резольного типа и бесще-лочного алюмоборосиликатного стекловолокна. Результаты исследования приведены в табл. 7.5. Стекловолокниты содержали 30+2% (масс.) связующего и 70+2% (масс.) стеклянного волокна (или в пересчете на объемную долю волокна ф -=0,54 0,02).  [c.316]

Сплавы со структурой а-фазы типа ВТ5-1, легированного 4—6 % А1, 2-3 % Sn, и ОТ4-1 (1,5-2,5 % А1, 0,7-2,0 % Мп) хорошо свариваются, сохраняют высокую пластичность при низких температурах и поэтому являются перспективными конструкционными материалами для использования в холодильной и криогенной технике. Сплавы с двз тсфазной (а + р)-структурой типа ВТЗ-1, содержащие 5,5-7,0 % А1, 0,8-2,0 % Сг, 2-3 % Мо, 0,2-0,7 % Fe, имеют более высокую прочность, но несколько меньш)то пластичность и их реже используют при криогенных температурах.  [c.621]

Применение. Эти сплавы широко применяются как конструкционные материалы для изготовления практически всех видов полуфабрикатов, деталей и конструкций, включая сварные. Наиболее эффективно их применение в авиационно-космической технике, в химическом машиностроении, в криогенной технике (табл. 17.9.), а таБсже в узлах и конструкциях, работающих при температурах до 300-350 °С.  [c.705]

При использовании сталей 12Х18Н10Т и 12Х18Н9Т в качестве коррозиоиностойких материалов или в криогенной технике оба материала закаливают с 1000—1070° С в воде или па воздухе. Кроме закалки для сварных конструкций для снятия напряжений и улучшения стойкости сварных соединений, применяют стабилизирующий отжиг при 850—900° С.  [c.84]


Смотреть страницы где упоминается термин Материалы для криогенной техник : [c.608]    [c.301]    [c.137]    [c.543]    [c.203]    [c.164]    [c.334]   
Конструкционные материалы (1990) -- [ c.498 , c.510 ]



ПОИСК



Материалы для криогенной техники (Е. А. Ульянин)

Техника криогенная



© 2025 Mash-xxl.info Реклама на сайте